Viscosity from DFT (VASP) using the Green-Kubo relation

Click For Summary
SUMMARY

This discussion focuses on the calculation of viscosity for MgSiO3 using the Green-Kubo relation within the VASP software environment. The two equations presented for viscosity calculation, one involving a summation of stress tensor components and the other focusing solely on the off-diagonal component Pxy, are shown to be equivalent under certain conditions. The participants clarify that due to the symmetry of the stress tensor, the number of independent components reduces from nine to six. Additionally, it is established that viscosity can be represented by two parameters, η and ζ, due to the isotropic nature of liquids.

PREREQUISITES
  • Familiarity with VASP (Vienna Ab-initio Simulation Package)
  • Understanding of the Green-Kubo relation for viscosity calculation
  • Knowledge of stress tensor components in continuum mechanics
  • Basic principles of isotropic liquids and their viscosity parameters
NEXT STEPS
  • Study the implementation of the Green-Kubo relation in VASP for viscosity calculations
  • Explore the derivation and applications of the stress tensor in fluid dynamics
  • Research the differences between shear viscosity and dilatational viscosity
  • Investigate the impact of equilibrium pressure on the trace of the stress tensor
USEFUL FOR

This discussion is beneficial for computational physicists, materials scientists, and researchers working on viscosity calculations in liquid systems using VASP and the Green-Kubo relation.

Polyamorph
Messages
25
Reaction score
1
Hello! In this paper https://pdfs.semanticscholar.org/e8a2/02f25555cd8c4f947bbbdff5a61a0ea0efd2.pdf the authors use VASP to determine MgSiO3 viscosity using the Green-Kubo relation

## \eta = \frac{V}{3k_{\rm{B}}T}\int_{0} \left<\sum_\limits{i<j}\sigma_{ij}(t+t_{0}).\sigma_{ij}(t_{0})\right>dt## where ##\sigma_{ij}## (i and j = x, y, z) is the stress tensor, t is time and t0 is the time origin. But I've seen other papers use:

## \eta = \frac{V}{3k_{\rm{B}}T}\int_{0}^{\infty} dt \left< P_{xy}(t)P_{xy}(0)\right>##, where ##P_{xy}## is the off-diagonal component of the stress tensor ##P_{αβ}## ( α and β are Cartesian components).

OK, so clearly these are essentially exactly the same equation but the second uses only the xy component whereas the first seems to suggest a summation? So which is correct.

Also, VASP outputs the stress tensor components as XX YY ZZ XY YZ ZX. So which of these should I use to input into the Green-Kubo equation? And are there missing components? what about yx, zx, yx?

Thanks in advance.
 
Last edited:
Physics news on Phys.org
OK, I've worked out that due to symmetry, XY=YX, YZ=ZY, ZX=XZ, so the tensor reduces from 9-components to 6. So that explains my second question (note typo when I wrote "what about yx, zx, yx?" should have said "what about yx, zy, xz?"

But I still don't understand why the first equation is suggesting a sum of the off-diagonal components whereas the second equation suggests only using one of the off-diagonal components ##P_{xy}##.
 
Polyamorph said:
But I've seen other papers
Can you give an example of these other papers? Were they looking at a 2D case? Without the proper context, it's really difficult to tell what' s going on.
 
Polyamorph said:
Sure, I got the second equation from this paper: http://www.homepages.ucl.ac.uk/~ucfbdxa/pubblicazioni/PRL05161.pdf
I think this is just a schematic equation. Further into that paper (page 2), there's a paragraph starting with "There are five independent components of the traceless stress tensor..." The paper goes on to say that they find the shear viscosity by averaging the autocorrelation functions of these five components and integrating them from 0 to ##t##, taking the limit as ##t \to \infty##. (beginning of the paragraph that starts with "In Fig. 2") I haven't done the nitty gritty math, but it looks like this makes the two definitions in your OP equivalent.
 
  • Like
Likes   Reactions: jim mcnamara
Yes, looks like you're right. Thanks for spotting that.
 
Polyamorph said:
OK, I've worked out that due to symmetry, XY=YX, YZ=ZY, ZX=XZ, so the tensor reduces from 9-components to 6. So that explains my second question (note typo when I wrote "what about yx, zx, yx?" should have said "what about yx, zy, xz?"

But I still don't understand why the first equation is suggesting a sum of the off-diagonal components whereas the second equation suggests only using one of the off-diagonal components ##P_{xy}##.

As liquids are isotropic, viscosity is a 4th order tensor which can be parametrized with only two parameters, ##\eta## and ##\zeta##, ##\eta## is the same whether determined with xy or xz or whathever component of the deviator of the viscosity gradient or of their sums. On the other hand, the correlation of the Trace of the ##\sigma_{ii}## will probably yield the longitudinal viscosity ##\zeta##.
 
DrDu said:
As liquids are isotropic, viscosity is a 4th order tensor which can be parametrized with only two parameters, ##\eta## and ##\zeta##, ##\eta## is the same whether determined with xy or xz or whathever component of the deviator of the viscosity gradient or of their sums. On the other hand, the correlation of the Trace of the ##\sigma_{ii}## will probably yield the longitudinal viscosity ##\zeta##.
I think you mean the dilatational viscosity (proportionality constant between the trace of the stress tensor and the trace of the rate of deformation tensor).
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
911
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
690
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K