Voltage across R, L and C vs AC Voltage source in RLC Series Circuit

AI Thread Summary
In a series resonance circuit, the voltage across the components R, L, and C can exceed the source voltage, which contrasts with DC circuits where the total voltage equals the source voltage. This phenomenon can be understood through a vector analogy, where individual component voltages can be larger than the resultant voltage. An intuitive analogy compares this to pushing a swinging weight, where small, periodic pushes can lead to large displacements due to resonance. The discussion emphasizes the distinction between voltage and EMF in inductors, highlighting that in time-varying magnetic fields, Faraday's Law indicates no potential exists for the electric field. Further clarification and resources on electromagnetic field theory are requested for deeper understanding.
Zahid Iftikhar
Messages
121
Reaction score
24
One property of series resonance circuit is that at resonance, the voltage across circuit elements R,L and C may be larger than the source voltage. I can relate it to vector analogy where component vectors may have larger values than the resultant and the phenomenon is counter-intuitive. This does not happen in DC circuits where sum of voltage across circuit components is always equal to the source voltage. Any useful intuitive explanation of this effect please?
Characteristics of RLC Series Circuit.PNG
 
Physics news on Phys.org
A useful analogy for resonant excitation is to think about a swinging weight on the end of a rope, and you pushing it at the extreme of each swing with a small force and displacement with your fingertip.

As long as the losses are low for the swinging weight, it takes very small repetitive/resonant forces and small pushes from your fingertip to make it build up a large swing displacement -- much larger than the small periodic push amplitude of your fingertip...
 
  • Like
Likes Zahid Iftikhar and Dale
It's simply sloppy! Don't use such sloppy books! There's no voltage across an inductance, it's an EMF. In time-varying magnetic fields, there's no potential for the elctric field due to Faraday's Law, which is one of the fundamental Maxwell equations,
$$\vec{\nabla} \times \vec{E}=-\frac{1}{c} \partial_t \vec{B}.$$
 
  • Like
Likes Zahid Iftikhar
vanhees71 said:
It's simply sloppy! Don't use such sloppy books! There's no voltage across an inductance, it's an EMF. In time-varying magnetic fields, there's no potential for the elctric field due to Faraday's Law, which is one of the fundamental Maxwell equations,
$$\vec{\nabla} \times \vec{E}=-\frac{1}{c} \partial_t \vec{B}.$$
Thanks. I need more help on this please.
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top