Hi, I have a question about the mathematical requirements of a wave function in a potential that is infinite at [tex]x \leq 0[/tex]. (At the other side it goes towards infinity at [tex]x = \infty[/tex].) Now, given a wave function in this potential that is zero for [tex]x = 0[/tex] and [tex]x = \infty[/tex]. Does it matter what that wavefunction is at [tex]x = -\infty[/tex]? I mean, I just figured you would have a wave function there that's zero all the way. Why will a wave function that goes to [tex]-\infty[/tex] at [tex]x = -\infty[/tex] not fit in the (time independent) Schrödinger equation, whereas one that goes to zero at [tex]-\infty[/tex] does? After all when we're normalizing it, we're just integrating from 0 to [tex]\infty[/tex] and doesn't really need to bother with it at negative x values. Or is that just some mathematical requirement that is independent of the physical properties? Can someone enlighten me, please?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Wave function requirements

**Physics Forums | Science Articles, Homework Help, Discussion**