Right now I'm watching a US Public Broadcasting Corporation television program entitled: "The Linguists", in which a man (I think he was from Africa, but I'm not even certain of that, as I wasn't even listening until the math stuff surfaced), explaiined his integer progression, which was quite remarkable.(adsbygoogle = window.adsbygoogle || []).push({});

The point is, he kept switching bases the higher he counted!

He counted up to twelve in base twelve, such that thirteen was "twelve-plus-one", and nineteen was "twelve-plus-seven", but twenty was twenty. Thirty-one was "twenty-plus-eleven", but thirty-two was "twenty-plus-twelve", and thirty-one was "twenty-plus-twelve-plus-one". Getting up to ninety-six, we have "four-twenties-plus-twelve-plus-four".

I can definitely appreciate the logic behind this, as with twelve as a base, you can make all of your major fractions with integers (so that one-third of twelve isn't three-point-three-with-a-line-over-the-three-to-the-right-of the-decimal-point, but the integer four). Expand that to base 60 (like our Babylonian-based hour/degree-minute-second system of telling time and direction), and you can divide by two, three, four, five, six, ten, twelve, fifteen, twenty, and thirty.

But, why does this language use base twelve for fine-tuning, and base twenty for gross-tuning?

Very unusual, but I sense something deeper and VERY important going on here.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Weird Integer Progression in Language Whose Name I Failed to Catch

**Physics Forums | Science Articles, Homework Help, Discussion**