W3bbo
- 31
- 0
Starting with simple fractions, it's known that:
{{{a \over b}} \over {{c \over d}}} = {{ad} \over {bc}}
So when b == d:
{{{a \over b}} \over {{c \over b}}} = {a \over c}
But what if in the case of:
{{{{1 + \sqrt 2 } \over {\sqrt 2 }}} \over {{{1 - \sqrt 2 } \over {\sqrt 2 }}}}
Following the above (for abc), it should result in:
{{1 + \sqrt 2 } \over {1 - \sqrt 2 }}
But if you follow the abcd version:
{{\left( {1 + \sqrt 2 } \right)\sqrt 2 } \over {\sqrt 2 \left( {1 - \sqrt 2 } \right)}} = {{2 + \sqrt 2 } \over {2 - \sqrt 2 }}
...which is not equal to the first expression.
Why?
{{{a \over b}} \over {{c \over d}}} = {{ad} \over {bc}}
So when b == d:
{{{a \over b}} \over {{c \over b}}} = {a \over c}
But what if in the case of:
{{{{1 + \sqrt 2 } \over {\sqrt 2 }}} \over {{{1 - \sqrt 2 } \over {\sqrt 2 }}}}
Following the above (for abc), it should result in:
{{1 + \sqrt 2 } \over {1 - \sqrt 2 }}
But if you follow the abcd version:
{{\left( {1 + \sqrt 2 } \right)\sqrt 2 } \over {\sqrt 2 \left( {1 - \sqrt 2 } \right)}} = {{2 + \sqrt 2 } \over {2 - \sqrt 2 }}
...which is not equal to the first expression.
Why?