What are the Derivatives of 2x/(1-x^2) and (x^4-2x+1)/(x^(1/2))?

  • Thread starter Thread starter sml92
  • Start date Start date
  • Tags Tags
    Derivative
sml92
Messages
3
Reaction score
0
Find the derivative of:

a) y= 2x
---
1-x^2

AND

b) y= x^4-2x+1
----------
(root of) x
 
Physics news on Phys.org
In problem 1 use the quotient rule and for 2 break it apart and use the power rule with fractional exponents.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top