What Are the Idempotents of the Ring Z/100Z?

  • Thread starter Thread starter chivhone
  • Start date Start date
  • Tags Tags
    Ring
chivhone
Messages
1
Reaction score
0
How do you proove what the idempotents of the ring Z/100Z are?

I know by trial and error that they are the elements 0,1,25,76 but have no proof as to why this is.
i know i have to find the integers 'a' such that 100 divides a(a-1)=a^2 -a but can do the maths to get a proper reasoning

any help?
thanks
 
Physics news on Phys.org
Chose an element [a] of Z/100Z whose representant a is such that 0\leq a \leq 99 (for simplicity). Then by definition, [a] will be idempotent if [a]²=[a]. That is to say, if a²+100Z = a+100Z. But this will happen if and only if there exists a k such that a² = a + k. Can you go from there?

Between, this question belongs to the Homework help section of Physics Forum (PF): https://www.physicsforums.com/forumdisplay.php?f=152
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top