thinkandmull said:
I've imagined Thompson's lamp in physical representation: half an object followed by it's quarter, ect. In arithmetic it would equal one, but in physical space the line of ever smaller objects can't go on forever, for then when put together the object wouldn't be perfectly finite anymore.
Well, there's physical reality, and then there's mathematics, and the two don't necessarily coincide in all matters. In physical reality, we can't take some thing and successively divide it an infinite number of times, and then add all the pieces together.
What you're talking about here is an infinite series - a sum of infinitely many terms that are added. The infinite series that you described adds up to 1, which is a perfectly finite number, even though the series itself has an infinite number of terms. That is, 1/2 + 1/4 + 1/8 + ... +1/(2^n) + ... converges to 1, and this can be proven quite easily.
A seemingly similar series, 1 + 1/2 + 1/3 + 1/4 + ... + 1/n + ... also contains an infinite number of terms, but does not converge to a particular number. The more terms you add, the larger the sum gets,
without bound. The first series, from Thomson's Paradox, also gets larger as you add more terms, but the sum is bounded above by 2. The more terms you add, the closer the partial sums (sums of a finite number of terms) get to 2.
thinkandmull said:
An answer I've heard is that standard analysis doesn't bother about a final term, but peering at the end of the line makes one curious how it would end.
If we have an infinite sum, how can there be a last term?
thinkandmull said:
HOWEVER, what I've gather here is that I am on the wrong track in understanding Cantors theory of uncountable points in an object by reducing everything to cardinality, instead of two other concepts of measure and density. I don't know if Banach-Tarski aids in this or makes it harder.
Cardinality plays a role in Cantor's proof of the uncountability of the real numbers. Since it doesn't matter which interval you take, we usually talk about the real numbers in the interval [0, 1]. This interval contains a countably infinite set, the rationals between 0 and 1, as well as an uncountably infinite set, the reals between 0 and 1. The two sets have different cardinalities. Both sets are dense in the interval [0, 1], but have different measures.
And, yes, you're on the wrong track in understanding Cantor's proof. I don't think Banach-Tarski has anything to do with Cantor's proof.