- 1,255
- 143
Pervect has https://www.physicsforums.com/showpost.php?p=1046874&postcount=17" for radial and tangential gravitational accelerations of a moving particle in Schwarzschild coordinates.
<br /> \frac{d^2 r}{d t^2} = \frac {3 m{{\it v_r}}^{2}}{ \left( r-2\,m \right) r} + \left( r-2\,m \right) \left( {{\it v_\phi}}^{2}-{\frac {m}{{r}^{3}}} \right) <br />
<br /> \frac{d^2\phi}{d t^2} = -\frac {2 {\it v_r}\,{\it v_\phi}\, \left( r -3\,m \right) }{ \left( r-2\,m \right) r}<br />
where v_r =dr/dt, v_\phi = d\phi/dt, m the mass of the primary and r,\phi the Schwarzschild coordinate parameters.
Does anyone know of an equivalent set of equations for the Kerr metric, at least for movement along the equator of a rotating black hole?
<br /> \frac{d^2 r}{d t^2} = \frac {3 m{{\it v_r}}^{2}}{ \left( r-2\,m \right) r} + \left( r-2\,m \right) \left( {{\it v_\phi}}^{2}-{\frac {m}{{r}^{3}}} \right) <br />
<br /> \frac{d^2\phi}{d t^2} = -\frac {2 {\it v_r}\,{\it v_\phi}\, \left( r -3\,m \right) }{ \left( r-2\,m \right) r}<br />
where v_r =dr/dt, v_\phi = d\phi/dt, m the mass of the primary and r,\phi the Schwarzschild coordinate parameters.
Does anyone know of an equivalent set of equations for the Kerr metric, at least for movement along the equator of a rotating black hole?
Last edited by a moderator: