MHB What Are the Real-Life Applications of the Euler Totient Function?

AI Thread Summary
The Euler Totient Function, φ(n), is notably applied in RSA Public Key Encryption, which secures digital communications. Its significance lies in the property that a^φ(n) ≡ 1 (mod n), which is crucial for encryption and decryption processes. The discussion highlights the need for tangible methods to introduce the function, emphasizing its practical implications in cryptography. Overall, the Euler Totient Function plays a vital role in modern security systems, showcasing its real-life applications. Understanding its applications can enhance appreciation for its mathematical importance.
matqkks
Messages
280
Reaction score
5
What is most motivating and tangible way of introducing this function? Does it in itself have any real life applications that have an impact. I can only think of a^phi(n)=1 (mod n) which is powerful result but is this function used elsewhere.
 
Mathematics news on Phys.org
matqkks said:
What is most motivating and tangible way of introducing this function? Does it in itself have any real life applications that have an impact. I can only think of a^phi(n)=1 (mod n) which is powerful result but is this function used elsewhere.

One of the most remarkable application of the $\displaystyle \varphi(n)$ is the RSA Public Key Encryption...

RSA Encryption -- from Wolfram MathWorld

Kind regards

$\chi$ $\sigma$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top