MHB What Are the Real Solutions to This Complex Quadratic Equation?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge
AI Thread Summary
The equation $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$ simplifies to a quartic polynomial, leading to the factorization into two quadratic expressions. The first quadratic, $3x^2+2x+1=0$, has complex solutions due to a negative discriminant. The second quadratic, $3x^2-10x-1=0$, yields real solutions calculated as $x_{1,2}=\frac{5}{3} \pm \frac{2 \sqrt{7}}{3}$. Thus, the only real solutions to the original equation are $\frac{5}{3} \pm \frac{2 \sqrt{7}}{3}$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve for the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$.
 
Mathematics news on Phys.org
anemone said:
Solve for the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$.

$(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13 \Rightarrow \\ 9x^4-12x^3-6x^2-12x^3+16x^2+8x-3x^2+4x+2-9x^2+12x-15-1=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-2x^2+24x-14=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-20x^2-12x-1=0$

$(3x^2+ax+b)(3x^2+cx+d)=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3cx^3+3dx^2+3ax^3+acx^2+adx+3bx^2+bcx+bd=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3(a+c)x^3+(3d+ac+3b)x^2+(ad+bc)x+bd=9x^4-24x^3-20x^2-12x-1 $

$3(a+c)=-24, \ \ \ 3d+ac+3b=-20, \ \ \ ad+bc=-12, \ \ \ bd=-1$

From $bd=-1$ we get: $b= \pm 1$ and $d=\mp 1$

  • If $b=1,d=-1:$

    $3(a+c)=-24, \ \ \ -3+ac+3=-20, \ \ \ -a+c=-12$
    $-a+c=-12\Rightarrow c=a-12$
    $3(a+c)=-24 \Rightarrow 3a+3a-36=-24 \Rightarrow 6a=12 \Rightarrow a=2$
    $c=a-12 \Rightarrow c=-10$

    Therefore, in this case we have:
    $$(3x^2+2x+1)(3x^2-10x-1)=9x^4-24x^3-20x^2-12x-1$$

    $$$$
  • If $b=-1, d=1:$

    $3(a+c)=-24, \ \ \ 3+ac-3=-20, \ \ \ a-c=-12$
    $a-c=-12 \Rightarrow a=c-12$
    $3(a+c)=-24 \Rightarrow 3c-36+3c=-24 \Rightarrow 6c=12 \Rightarrow c=2$
    $a=c-12 \Rightarrow a=2-12 \Rightarrow a=-10$

    Therefore, in this case we have:
    $$(3x^2-10x-1)(3x^2+2x+1)=9x^4-24x^3-20x^2-12x-1$$

So we have that $$9x^4-24x^3-20x^2-12x-1=(3x^2+2x+1)(3x^2-10x-1)$$

$$9x^4-24x^3-20x^2-12x-1=0 \Rightarrow (3x^2+2x+1)(3x^2-10x-1)=0 \Rightarrow \\ 3x^2+2x+1=0 \text{ or } 3x^2-10x-1=0 $$

  • $3x^2+2x+1=0 \\ \Delta=4-4 \cdot 3=-8<0$
    The solutions are complex.
    $$$$
  • $3x^2-10x-1=0 \\ \Delta=100-4 \cdot 3 \cdot (-1)=100+12=112>0$
    $x_{1,2}=\frac{-(-10) \pm \sqrt{\Delta}}{2 \cdot 3}=\frac{10 \pm 4 \sqrt{7}}{2 \cdot 3}=\frac{5}{3} \pm \frac{2 \sqrt{7}}{3} \in \mathbb{R}$

So the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$ are:
$$\frac{5}{3} \pm \frac{2 \sqrt{7}}{3}$$
 
Well done, mathmari! The answer is of course correct and thanks for participating!:)

I acknowledge that there are many different ways to approach this problem and hence, I still welcome those who wanted to take a stab at the problem differently to post your solution here. :)
 
mathmari said:
$(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13 \Rightarrow \\ 9x^4-12x^3-6x^2-12x^3+16x^2+8x-3x^2+4x+2-9x^2+12x-15-1=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-2x^2+24x-14=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-20x^2-12x-1=0$

$(3x^2+ax+b)(3x^2+cx+d)=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3cx^3+3dx^2+3ax^3+acx^2+adx+3bx^2+bcx+bd=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3(a+c)x^3+(3d+ac+3b)x^2+(ad+bc)x+bd=9x^4-24x^3-20x^2-12x-1 $

$3(a+c)=-24, \ \ \ 3d+ac+3b=-20, \ \ \ ad+bc=-12, \ \ \ bd=-1$

From $bd=-1$ we get: $b= \pm 1$ and $d=\mp 1$

[LIST

[*]If $b=1,d=-1:$

$3(a+c)=-24, \ \ \ -3+ac+3=-20, \ \ \ -a+c=-12$
$-a+c=-12\Rightarrow c=a-12$
$3(a+c)=-24 \Rightarrow 3a+3a-36=-24 \Rightarrow 6a=12 \Rightarrow a=2$
$c=a-12 \Rightarrow c=-10$

Therefore, in this case we have:
$$(3x^2+2x+1)(3x^2-10x-1)=9x^4-24x^3-20x^2-12x-1$$

$$$$

[*]If $b=-1, d=1:$

$3(a+c)=-24, \ \ \ 3+ac-3=-20, \ \ \ a-c=-12$
$a-c=-12 \Rightarrow a=c-12$
$3(a+c)=-24 \Rightarrow 3c-36+3c=-24 \Rightarrow 6c=12 \Rightarrow c=2$
$a=c-12 \Rightarrow a=2-12 \Rightarrow a=-10$

Therefore, in this case we have:
$$(3x^2-10x-1)(3x^2+2x+1)=9x^4-24x^3-20x^2-12x-1$$
[/LIST]

So we have that $$9x^4-24x^3-20x^2-12x-1=(3x^2+2x+1)(3x^2-10x-1)$$

$$9x^4-24x^3-20x^2-12x-1=0 \Rightarrow (3x^2+2x+1)(3x^2-10x-1)=0 \Rightarrow \\ 3x^2+2x+1=0 \text{ or } 3x^2-10x-1=0 $$

  • $3x^2+2x+1=0 \\ \Delta=4-4 \cdot 3=-8<0$
    The solutions are complex.
    $$$$
  • $3x^2-10x-1=0 \\ \Delta=100-4 \cdot 3 \cdot (-1)=100+12=112>0$
    $x_{1,2}=\frac{-(-10) \pm \sqrt{\Delta}}{2 \cdot 3}=\frac{10 \pm 4 \sqrt{7}}{2 \cdot 3}=\frac{5}{3} \pm \frac{2 \sqrt{7}}{3} \in \mathbb{R}$

So the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$ are:
$$\frac{5}{3} \pm \frac{2 \sqrt{7}}{3}$$

I have 2 observations
1) you tried $(3x^2 + ax +b)(3x^2+cx + d)$ it was a right guess but not a full proof system . It might have been $(9x^2+ax+b)(x^2+cx + d)$
2) taking b= 1 and d = -1 is same as d =1 and b = -1 they shall give same solution becuase of symetry of solution
 
My solution::

$(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$

$(3x^2-4x)^2-6(3x^2-4x)+2-15-1=18x^2+36x-13$

At this point, I am sorely tempted to move all the terms (except the first square term) from the LHS to the RHS and simplify from there, and I get:

$(3x^2-4x)^2=36x^2+12x+1$

$(3x^2-4x)^2=(6x+1)^2$

Taking the square root on both sides we get:

$3x^2-4x=6x+1$ or $3x^2-10x-1=0$ which gives $x=\dfrac{5\pm2\sqrt{7}}{3}$.

$3x^2-4x=-(6x+1)$ or $3x^2+2x+1=0$ which gives complex roots.

Hence the solutions for the problem are $x=\dfrac{5\pm2\sqrt{7}}{3}$ and we're done.
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top