$(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13 \Rightarrow \\ 9x^4-12x^3-6x^2-12x^3+16x^2+8x-3x^2+4x+2-9x^2+12x-15-1=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-2x^2+24x-14=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-20x^2-12x-1=0$
$(3x^2+ax+b)(3x^2+cx+d)=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3cx^3+3dx^2+3ax^3+acx^2+adx+3bx^2+bcx+bd=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3(a+c)x^3+(3d+ac+3b)x^2+(ad+bc)x+bd=9x^4-24x^3-20x^2-12x-1 $
$3(a+c)=-24, \ \ \ 3d+ac+3b=-20, \ \ \ ad+bc=-12, \ \ \ bd=-1$
From $bd=-1$ we get: $b= \pm 1$ and $d=\mp 1$
[LIST
[*]If $b=1,d=-1:$
$3(a+c)=-24, \ \ \ -3+ac+3=-20, \ \ \ -a+c=-12$
$-a+c=-12\Rightarrow c=a-12$
$3(a+c)=-24 \Rightarrow 3a+3a-36=-24 \Rightarrow 6a=12 \Rightarrow a=2$
$c=a-12 \Rightarrow c=-10$
Therefore, in this case we have:
$$(3x^2+2x+1)(3x^2-10x-1)=9x^4-24x^3-20x^2-12x-1$$
$$$$
[*]If $b=-1, d=1:$
$3(a+c)=-24, \ \ \ 3+ac-3=-20, \ \ \ a-c=-12$
$a-c=-12 \Rightarrow a=c-12$
$3(a+c)=-24 \Rightarrow 3c-36+3c=-24 \Rightarrow 6c=12 \Rightarrow c=2$
$a=c-12 \Rightarrow a=2-12 \Rightarrow a=-10$
Therefore, in this case we have:
$$(3x^2-10x-1)(3x^2+2x+1)=9x^4-24x^3-20x^2-12x-1$$
[/LIST]
So we have that $$9x^4-24x^3-20x^2-12x-1=(3x^2+2x+1)(3x^2-10x-1)$$
$$9x^4-24x^3-20x^2-12x-1=0 \Rightarrow (3x^2+2x+1)(3x^2-10x-1)=0 \Rightarrow \\ 3x^2+2x+1=0 \text{ or } 3x^2-10x-1=0 $$
- $3x^2+2x+1=0 \\ \Delta=4-4 \cdot 3=-8<0$
The solutions are complex.
$$$$
- $3x^2-10x-1=0 \\ \Delta=100-4 \cdot 3 \cdot (-1)=100+12=112>0$
$x_{1,2}=\frac{-(-10) \pm \sqrt{\Delta}}{2 \cdot 3}=\frac{10 \pm 4 \sqrt{7}}{2 \cdot 3}=\frac{5}{3} \pm \frac{2 \sqrt{7}}{3} \in \mathbb{R}$
So the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$ are:
$$\frac{5}{3} \pm \frac{2 \sqrt{7}}{3}$$