MHB What Are the Real Solutions to This Complex Quadratic Equation?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge
Click For Summary
The equation $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$ simplifies to a quartic polynomial, leading to the factorization into two quadratic expressions. The first quadratic, $3x^2+2x+1=0$, has complex solutions due to a negative discriminant. The second quadratic, $3x^2-10x-1=0$, yields real solutions calculated as $x_{1,2}=\frac{5}{3} \pm \frac{2 \sqrt{7}}{3}$. Thus, the only real solutions to the original equation are $\frac{5}{3} \pm \frac{2 \sqrt{7}}{3}$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve for the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$.
 
Mathematics news on Phys.org
anemone said:
Solve for the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$.

$(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13 \Rightarrow \\ 9x^4-12x^3-6x^2-12x^3+16x^2+8x-3x^2+4x+2-9x^2+12x-15-1=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-2x^2+24x-14=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-20x^2-12x-1=0$

$(3x^2+ax+b)(3x^2+cx+d)=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3cx^3+3dx^2+3ax^3+acx^2+adx+3bx^2+bcx+bd=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3(a+c)x^3+(3d+ac+3b)x^2+(ad+bc)x+bd=9x^4-24x^3-20x^2-12x-1 $

$3(a+c)=-24, \ \ \ 3d+ac+3b=-20, \ \ \ ad+bc=-12, \ \ \ bd=-1$

From $bd=-1$ we get: $b= \pm 1$ and $d=\mp 1$

  • If $b=1,d=-1:$

    $3(a+c)=-24, \ \ \ -3+ac+3=-20, \ \ \ -a+c=-12$
    $-a+c=-12\Rightarrow c=a-12$
    $3(a+c)=-24 \Rightarrow 3a+3a-36=-24 \Rightarrow 6a=12 \Rightarrow a=2$
    $c=a-12 \Rightarrow c=-10$

    Therefore, in this case we have:
    $$(3x^2+2x+1)(3x^2-10x-1)=9x^4-24x^3-20x^2-12x-1$$

    $$$$
  • If $b=-1, d=1:$

    $3(a+c)=-24, \ \ \ 3+ac-3=-20, \ \ \ a-c=-12$
    $a-c=-12 \Rightarrow a=c-12$
    $3(a+c)=-24 \Rightarrow 3c-36+3c=-24 \Rightarrow 6c=12 \Rightarrow c=2$
    $a=c-12 \Rightarrow a=2-12 \Rightarrow a=-10$

    Therefore, in this case we have:
    $$(3x^2-10x-1)(3x^2+2x+1)=9x^4-24x^3-20x^2-12x-1$$

So we have that $$9x^4-24x^3-20x^2-12x-1=(3x^2+2x+1)(3x^2-10x-1)$$

$$9x^4-24x^3-20x^2-12x-1=0 \Rightarrow (3x^2+2x+1)(3x^2-10x-1)=0 \Rightarrow \\ 3x^2+2x+1=0 \text{ or } 3x^2-10x-1=0 $$

  • $3x^2+2x+1=0 \\ \Delta=4-4 \cdot 3=-8<0$
    The solutions are complex.
    $$$$
  • $3x^2-10x-1=0 \\ \Delta=100-4 \cdot 3 \cdot (-1)=100+12=112>0$
    $x_{1,2}=\frac{-(-10) \pm \sqrt{\Delta}}{2 \cdot 3}=\frac{10 \pm 4 \sqrt{7}}{2 \cdot 3}=\frac{5}{3} \pm \frac{2 \sqrt{7}}{3} \in \mathbb{R}$

So the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$ are:
$$\frac{5}{3} \pm \frac{2 \sqrt{7}}{3}$$
 
Well done, mathmari! The answer is of course correct and thanks for participating!:)

I acknowledge that there are many different ways to approach this problem and hence, I still welcome those who wanted to take a stab at the problem differently to post your solution here. :)
 
mathmari said:
$(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13 \Rightarrow \\ 9x^4-12x^3-6x^2-12x^3+16x^2+8x-3x^2+4x+2-9x^2+12x-15-1=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-2x^2+24x-14=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-20x^2-12x-1=0$

$(3x^2+ax+b)(3x^2+cx+d)=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3cx^3+3dx^2+3ax^3+acx^2+adx+3bx^2+bcx+bd=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3(a+c)x^3+(3d+ac+3b)x^2+(ad+bc)x+bd=9x^4-24x^3-20x^2-12x-1 $

$3(a+c)=-24, \ \ \ 3d+ac+3b=-20, \ \ \ ad+bc=-12, \ \ \ bd=-1$

From $bd=-1$ we get: $b= \pm 1$ and $d=\mp 1$

[LIST

[*]If $b=1,d=-1:$

$3(a+c)=-24, \ \ \ -3+ac+3=-20, \ \ \ -a+c=-12$
$-a+c=-12\Rightarrow c=a-12$
$3(a+c)=-24 \Rightarrow 3a+3a-36=-24 \Rightarrow 6a=12 \Rightarrow a=2$
$c=a-12 \Rightarrow c=-10$

Therefore, in this case we have:
$$(3x^2+2x+1)(3x^2-10x-1)=9x^4-24x^3-20x^2-12x-1$$

$$$$

[*]If $b=-1, d=1:$

$3(a+c)=-24, \ \ \ 3+ac-3=-20, \ \ \ a-c=-12$
$a-c=-12 \Rightarrow a=c-12$
$3(a+c)=-24 \Rightarrow 3c-36+3c=-24 \Rightarrow 6c=12 \Rightarrow c=2$
$a=c-12 \Rightarrow a=2-12 \Rightarrow a=-10$

Therefore, in this case we have:
$$(3x^2-10x-1)(3x^2+2x+1)=9x^4-24x^3-20x^2-12x-1$$
[/LIST]

So we have that $$9x^4-24x^3-20x^2-12x-1=(3x^2+2x+1)(3x^2-10x-1)$$

$$9x^4-24x^3-20x^2-12x-1=0 \Rightarrow (3x^2+2x+1)(3x^2-10x-1)=0 \Rightarrow \\ 3x^2+2x+1=0 \text{ or } 3x^2-10x-1=0 $$

  • $3x^2+2x+1=0 \\ \Delta=4-4 \cdot 3=-8<0$
    The solutions are complex.
    $$$$
  • $3x^2-10x-1=0 \\ \Delta=100-4 \cdot 3 \cdot (-1)=100+12=112>0$
    $x_{1,2}=\frac{-(-10) \pm \sqrt{\Delta}}{2 \cdot 3}=\frac{10 \pm 4 \sqrt{7}}{2 \cdot 3}=\frac{5}{3} \pm \frac{2 \sqrt{7}}{3} \in \mathbb{R}$

So the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$ are:
$$\frac{5}{3} \pm \frac{2 \sqrt{7}}{3}$$

I have 2 observations
1) you tried $(3x^2 + ax +b)(3x^2+cx + d)$ it was a right guess but not a full proof system . It might have been $(9x^2+ax+b)(x^2+cx + d)$
2) taking b= 1 and d = -1 is same as d =1 and b = -1 they shall give same solution becuase of symetry of solution
 
My solution::

$(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$

$(3x^2-4x)^2-6(3x^2-4x)+2-15-1=18x^2+36x-13$

At this point, I am sorely tempted to move all the terms (except the first square term) from the LHS to the RHS and simplify from there, and I get:

$(3x^2-4x)^2=36x^2+12x+1$

$(3x^2-4x)^2=(6x+1)^2$

Taking the square root on both sides we get:

$3x^2-4x=6x+1$ or $3x^2-10x-1=0$ which gives $x=\dfrac{5\pm2\sqrt{7}}{3}$.

$3x^2-4x=-(6x+1)$ or $3x^2+2x+1=0$ which gives complex roots.

Hence the solutions for the problem are $x=\dfrac{5\pm2\sqrt{7}}{3}$ and we're done.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K