What Are the Real Solutions to This Complex Quadratic Equation?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge
Click For Summary

Discussion Overview

The discussion revolves around finding the real solutions to the complex quadratic equation given by $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$. Participants explore various methods of solving the equation, including polynomial factorization and the application of the quadratic formula.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory
  • Debate/contested

Main Points Raised

  • Participants present a detailed expansion and simplification of the equation, leading to a polynomial of degree four.
  • Some participants propose factorization of the polynomial into two quadratic factors, exploring different values for coefficients.
  • There is a discussion on the discriminant of the resulting quadratics, with one quadratic yielding complex solutions and the other yielding real solutions.
  • One participant confirms the correctness of the solution provided by another, while inviting further alternative approaches to the problem.
  • Multiple methods of arriving at the same conclusion are discussed, highlighting the complexity of the problem.

Areas of Agreement / Disagreement

While there is agreement on the final real solutions derived from the quadratic equation, the discussion includes various methods and interpretations, indicating that multiple approaches are valid. There is no consensus on a single method being superior, and participants are encouraged to share different solutions.

Contextual Notes

Participants note the importance of the discriminant in determining the nature of the solutions, but there are unresolved aspects regarding the implications of the complex solutions and their relevance to the original equation.

Who May Find This Useful

This discussion may be useful for students and enthusiasts of mathematics, particularly those interested in polynomial equations, quadratic solutions, and different methods of problem-solving in algebra.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve for the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$.
 
Mathematics news on Phys.org
anemone said:
Solve for the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$.

$(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13 \Rightarrow \\ 9x^4-12x^3-6x^2-12x^3+16x^2+8x-3x^2+4x+2-9x^2+12x-15-1=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-2x^2+24x-14=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-20x^2-12x-1=0$

$(3x^2+ax+b)(3x^2+cx+d)=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3cx^3+3dx^2+3ax^3+acx^2+adx+3bx^2+bcx+bd=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3(a+c)x^3+(3d+ac+3b)x^2+(ad+bc)x+bd=9x^4-24x^3-20x^2-12x-1 $

$3(a+c)=-24, \ \ \ 3d+ac+3b=-20, \ \ \ ad+bc=-12, \ \ \ bd=-1$

From $bd=-1$ we get: $b= \pm 1$ and $d=\mp 1$

  • If $b=1,d=-1:$

    $3(a+c)=-24, \ \ \ -3+ac+3=-20, \ \ \ -a+c=-12$
    $-a+c=-12\Rightarrow c=a-12$
    $3(a+c)=-24 \Rightarrow 3a+3a-36=-24 \Rightarrow 6a=12 \Rightarrow a=2$
    $c=a-12 \Rightarrow c=-10$

    Therefore, in this case we have:
    $$(3x^2+2x+1)(3x^2-10x-1)=9x^4-24x^3-20x^2-12x-1$$

    $$$$
  • If $b=-1, d=1:$

    $3(a+c)=-24, \ \ \ 3+ac-3=-20, \ \ \ a-c=-12$
    $a-c=-12 \Rightarrow a=c-12$
    $3(a+c)=-24 \Rightarrow 3c-36+3c=-24 \Rightarrow 6c=12 \Rightarrow c=2$
    $a=c-12 \Rightarrow a=2-12 \Rightarrow a=-10$

    Therefore, in this case we have:
    $$(3x^2-10x-1)(3x^2+2x+1)=9x^4-24x^3-20x^2-12x-1$$

So we have that $$9x^4-24x^3-20x^2-12x-1=(3x^2+2x+1)(3x^2-10x-1)$$

$$9x^4-24x^3-20x^2-12x-1=0 \Rightarrow (3x^2+2x+1)(3x^2-10x-1)=0 \Rightarrow \\ 3x^2+2x+1=0 \text{ or } 3x^2-10x-1=0 $$

  • $3x^2+2x+1=0 \\ \Delta=4-4 \cdot 3=-8<0$
    The solutions are complex.
    $$$$
  • $3x^2-10x-1=0 \\ \Delta=100-4 \cdot 3 \cdot (-1)=100+12=112>0$
    $x_{1,2}=\frac{-(-10) \pm \sqrt{\Delta}}{2 \cdot 3}=\frac{10 \pm 4 \sqrt{7}}{2 \cdot 3}=\frac{5}{3} \pm \frac{2 \sqrt{7}}{3} \in \mathbb{R}$

So the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$ are:
$$\frac{5}{3} \pm \frac{2 \sqrt{7}}{3}$$
 
Well done, mathmari! The answer is of course correct and thanks for participating!:)

I acknowledge that there are many different ways to approach this problem and hence, I still welcome those who wanted to take a stab at the problem differently to post your solution here. :)
 
mathmari said:
$(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13 \Rightarrow \\ 9x^4-12x^3-6x^2-12x^3+16x^2+8x-3x^2+4x+2-9x^2+12x-15-1=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-2x^2+24x-14=18x^2+36x-13 \Rightarrow \\ 9x^4-24x^3-20x^2-12x-1=0$

$(3x^2+ax+b)(3x^2+cx+d)=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3cx^3+3dx^2+3ax^3+acx^2+adx+3bx^2+bcx+bd=9x^4-24x^3-20x^2-12x-1 \Rightarrow \\ 9x^4+3(a+c)x^3+(3d+ac+3b)x^2+(ad+bc)x+bd=9x^4-24x^3-20x^2-12x-1 $

$3(a+c)=-24, \ \ \ 3d+ac+3b=-20, \ \ \ ad+bc=-12, \ \ \ bd=-1$

From $bd=-1$ we get: $b= \pm 1$ and $d=\mp 1$

[LIST

[*]If $b=1,d=-1:$

$3(a+c)=-24, \ \ \ -3+ac+3=-20, \ \ \ -a+c=-12$
$-a+c=-12\Rightarrow c=a-12$
$3(a+c)=-24 \Rightarrow 3a+3a-36=-24 \Rightarrow 6a=12 \Rightarrow a=2$
$c=a-12 \Rightarrow c=-10$

Therefore, in this case we have:
$$(3x^2+2x+1)(3x^2-10x-1)=9x^4-24x^3-20x^2-12x-1$$

$$$$

[*]If $b=-1, d=1:$

$3(a+c)=-24, \ \ \ 3+ac-3=-20, \ \ \ a-c=-12$
$a-c=-12 \Rightarrow a=c-12$
$3(a+c)=-24 \Rightarrow 3c-36+3c=-24 \Rightarrow 6c=12 \Rightarrow c=2$
$a=c-12 \Rightarrow a=2-12 \Rightarrow a=-10$

Therefore, in this case we have:
$$(3x^2-10x-1)(3x^2+2x+1)=9x^4-24x^3-20x^2-12x-1$$
[/LIST]

So we have that $$9x^4-24x^3-20x^2-12x-1=(3x^2+2x+1)(3x^2-10x-1)$$

$$9x^4-24x^3-20x^2-12x-1=0 \Rightarrow (3x^2+2x+1)(3x^2-10x-1)=0 \Rightarrow \\ 3x^2+2x+1=0 \text{ or } 3x^2-10x-1=0 $$

  • $3x^2+2x+1=0 \\ \Delta=4-4 \cdot 3=-8<0$
    The solutions are complex.
    $$$$
  • $3x^2-10x-1=0 \\ \Delta=100-4 \cdot 3 \cdot (-1)=100+12=112>0$
    $x_{1,2}=\frac{-(-10) \pm \sqrt{\Delta}}{2 \cdot 3}=\frac{10 \pm 4 \sqrt{7}}{2 \cdot 3}=\frac{5}{3} \pm \frac{2 \sqrt{7}}{3} \in \mathbb{R}$

So the real solutions for $(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$ are:
$$\frac{5}{3} \pm \frac{2 \sqrt{7}}{3}$$

I have 2 observations
1) you tried $(3x^2 + ax +b)(3x^2+cx + d)$ it was a right guess but not a full proof system . It might have been $(9x^2+ax+b)(x^2+cx + d)$
2) taking b= 1 and d = -1 is same as d =1 and b = -1 they shall give same solution because of symetry of solution
 
My solution::

$(3x^2-4x-1)(3x^2-4x-2)-3(3x^2-4x+5)-1=18x^2+36x-13$

$(3x^2-4x)^2-6(3x^2-4x)+2-15-1=18x^2+36x-13$

At this point, I am sorely tempted to move all the terms (except the first square term) from the LHS to the RHS and simplify from there, and I get:

$(3x^2-4x)^2=36x^2+12x+1$

$(3x^2-4x)^2=(6x+1)^2$

Taking the square root on both sides we get:

$3x^2-4x=6x+1$ or $3x^2-10x-1=0$ which gives $x=\dfrac{5\pm2\sqrt{7}}{3}$.

$3x^2-4x=-(6x+1)$ or $3x^2+2x+1=0$ which gives complex roots.

Hence the solutions for the problem are $x=\dfrac{5\pm2\sqrt{7}}{3}$ and we're done.
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K