What Defines a Nonreflexive Relation in Set Theory?

  • Context: MHB 
  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Relation
Click For Summary
SUMMARY

A nonreflexive relation is defined as a relation where there exists at least one element \( x \) such that \( (x, x) \notin R \). This is distinct from an irreflexive relation, where no element \( x \) satisfies \( (x, x) \in R \). In the provided example, the relation \( S = \{(Kathy, Pam), (Pam, Kathy), (John, Paul), (Paul, John), (Kathy, Kathy), (Pam, Pam), (John, John), (Paul, Paul)\} \) is reflexive, as it includes all pairs \( (x, x) \) for elements in the set \( F = \{Kathy, Pam, Paul, John\} \). Removing any of these pairs would render the relation nonreflexive.

PREREQUISITES
  • Understanding of binary relations in set theory
  • Familiarity with reflexive, irreflexive, symmetric, and transitive properties
  • Knowledge of equivalence relations
  • Basic comprehension of set notation and elements
NEXT STEPS
  • Study the definitions and properties of equivalence relations in set theory
  • Explore examples of reflexive, irreflexive, and nonreflexive relations
  • Learn about the implications of symmetry and transitivity in binary relations
  • Read "Discovering Modern Set Theory. I The Basics" by Winfried Just and Martin Weese for deeper insights
USEFUL FOR

Students of mathematics, particularly those studying set theory, as well as educators and anyone interested in the properties of binary relations.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading the book: "Discovering Modern Set Theory. I The Basics" (AMS) by Winfried Just and Martin Weese.

I am currently focused on Chapter 2: Partial Order Relations ...

I need some help with understanding the meaning of "nonreflexive relation"...

The section from J&W giving the various definitions of properties of binary relations is as follows:View attachment 7544Can someone please give the definition of a nonreflexive relation (as distinct form an irreflexive relation ... ) ...

Is a nonreflexive relation a relation where $$\langle x,x \rangle \in R$$ for some $$x$$ but where there exist $$y$$ such that $$\langle y, y \rangle \notin R$$ ... ... ?
Hope someone can help ...

Peter
 
Physics news on Phys.org
Hi,

Nonreflexive means that the relation is not reflexive. That is there is an x such that $(x,x)\not\in S$.
Irreflective is when there is no x such that $(x,x)\in S$

Regards
David
 
In the example given, the relation S= {(Kathy, Pam), (Pam, Kathy), (John, Paul), (Paul, John), (Kathy, Kathy), (Pam, Pam), (John, John), (Paul, Paul)} is reflexive because "for every x in F, (x, x) is in S". Here, F is {Kathy, Pam, Paul, John} so to be reflexive S must contain each of (Kathy, Kathy), (Pam, Pam), (John, John), and (Paul, Paul). If we were to remove anyone of those, say remove (Pam, Pam) to get {(Kathy, Pam), (Pam, Kathy), (John, Paul), (Paul, John), (Kathy, Kathy), (John, John), (Paul, Paul)}, that would no longer be "reflexive".

Notice that this relation contains (Kathy, Pam) and (Pam, Kathy) as well as (John,Paul) and (Paul, John) so is "symmetric"- whenever a symmetric relation contains (x, y) it must also contain (y, x).

I will leave it to you to show that "whenever the relation contains (x, y) and (y, z) then it contains (x, z)". the "transitive property", so that, in fact, this is an "equivalence relation" which is made clear from the description of the relation as "(x, y) is in the relation if and only if x and y are the same gender".
 
HallsofIvy said:
In the example given, the relation S= {(Kathy, Pam), (Pam, Kathy), (John, Paul), (Paul, John), (Kathy, Kathy), (Pam, Pam), (John, John), (Paul, Paul)} is reflexive because "for every x in F, (x, x) is in S". Here, F is {Kathy, Pam, Paul, John} so to be reflexive S must contain each of (Kathy, Kathy), (Pam, Pam), (John, John), and (Paul, Paul). If we were to remove anyone of those, say remove (Pam, Pam) to get {(Kathy, Pam), (Pam, Kathy), (John, Paul), (Paul, John), (Kathy, Kathy), (John, John), (Paul, Paul)}, that would no longer be "reflexive".

Notice that this relation contains (Kathy, Pam) and (Pam, Kathy) as well as (John,Paul) and (Paul, John) so is "symmetric"- whenever a symmetric relation contains (x, y) it must also contain (y, x).

I will leave it to you to show that "whenever the relation contains (x, y) and (y, z) then it contains (x, z)". the "transitive property", so that, in fact, this is an "equivalence relation" which is made clear from the description of the relation as "(x, y) is in the relation if and only if x and y are the same gender".
Thanks Pereskia and HallsofIvy... I appreciate your help ...

Sorry for the late response ... have had to contend with other urgent matters ...

Peter
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
3K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
3K