What determines a vacuum tube's perveance?

  • Thread starter Thread starter EinsteinKreuz
  • Start date Start date
  • Tags Tags
    Current
AI Thread Summary
Vacuum tube (VT) electronics resources are scarce, with many textbooks lacking coverage of thermionic valves. The triode plate current characteristic curve is defined by an equation involving the amplification factor (μ) and transconductance (gm), which may not be constant and can depend on various independent variables. The discussion highlights that the best mathematical model for triode anode current varies based on grid voltage and anode voltage, with no single approximation fitting all tubes. The perveance, a key factor in current flow, is influenced by tube geometry and electrode voltages, while gm can change with operating conditions. For detailed insights, references to classic texts like the "Radiotron Designers Handbook" and "ELECTRON TUBE DESIGN" are suggested for further exploration.
EinsteinKreuz
Messages
64
Reaction score
1
So books on VT electronics are quite hard to come by these days and many electronics textbooks don't mention thermionic valves whatsoever. I managed to find a very good vintage book : Vacuum tube and semiconductor electronics(Millman, 1958).

It describes the triode plate current characteristic curve as defined by the equation:

I_{A} = g_{m} = \sqrt{V_{G} + \frac {V_{A}{\mu}^{3}Where μ is the amplification factor and gm is the transconductance.

But another book defines IA = f(VA,VG) and expands it into a taylor series. Now first question is: Are the amplification factor and transconductance constant characteristics of the tube and if not, what are the independent variables which they depend on and how can they be calculated?

Also, is the first equation an aproximation? Because in another book it shows the triode current curves plotted against anode voltage for both negative grid voltages and one for positive grid voltage and when the grid is positive the curve has an inverted parabolic shape whereas when VG < 0 the curves are almost linear.

So in a nutshell, what's the best fit mathematical model of the triode anode current if you know the grid voltage function VG(t) and the voltage applied to the anode?
 
Engineering news on Phys.org
All VTs are different. There is no single best approximation equation. Triodes are very rarely operated at fixed anode voltage. The characteristics of a VT change as it ages.

If you post the tube number and the available curves of the triode you intend to use, we may be able to help you.

Why do you need the approximation? Will you model a circuit with spice or use it in a numerical model?
See the PSpice model; http://www.duncanamps.com/spicevalvesgt.html
google 'spice triode model'

Have you got a copy of “Radiotron Designers Handbook”. Langford Smith. 4'th Edn. 1952. There are .pdf copies available.

Take a look at the MIT Radiation Laboratory Series. Series index is V28. .pdf are available from; http://www.jlab.org/ir//MITSeries.html
 
EinsteinKreuz said:
So books on VT electronics are quite hard to come by these days and many electronics textbooks don't mention thermionic valves whatsoever. I managed to find a very good vintage book : https://www.amazon.com/dp/125832282X/?tag=pfamazon01-20

It describes the triode plate current characteristic curve as defined by the equation:

I_{A} = g_{m} = \sqrt{V_{G} + \frac {V_{A}{\mu}^{3}Where μ is the amplification factor and gm is the transconductance.

But another book defines IA = f(VA,VG) and expands it into a taylor series. Now first question is: Are the amplification factor and transconductance constant characteristics of the tube and if not, what are the independent variables which they depend on and how can they be calculated?

Also, is the first equation an aproximation? Because in another book it shows the triode current curves plotted against anode voltage for both negative grid voltages and one for positive grid voltage and when the grid is positive the curve has an inverted parabolic shape whereas when VG < 0 the curves are almost linear.

So in a nutshell, what's the best fit mathematical model of the triode anode current if you know the grid voltage function VG(t) and the voltage applied to the anode?
There are useful formulas in Radio Engineers' Handbook, by Terman, one of which I will try to write for you:-
Ip = k(Eg+Ep/mu)^3/2. In this formula, k is a constant called the perveance - the ability of the device to pass current. The plate voltage is divided by mu, the amplification factor, as its influence on current is less than the grid by this factor. The tube constants depend on the geometry and on the electrode voltages. mu tends to be rather constant as voltages are altered, but Gm does not. The manufacturer usually gives standard operating voltages.
If going from negative to positive grid, there is no sudden change in the curvature of the mutual characteristic, but grid current will flow, so the grid circuit must have low resistance. If the grid positive voltage approaches Ep, then it suddenly robs the plate of electrons, and the Ep/Ip characteristic then saturates, or flat tops.
 
Last edited by a moderator:
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top