I What determines the charge of a field?

  • I
  • Thread starter Thread starter carllacan
  • Start date Start date
  • Tags Tags
    Charge Field
carllacan
Messages
272
Reaction score
3
I understand what we classically know as the charge of a particle is actually the parameter of the local phase symmetry of the field the particle belongs to, the Noether current of which permits its coupling to the electromagnetic field. But when a field has phase symmetry it is symmetric under any phase transformation ψ → ψe, not just the one with a specific α as parameter.

So why is it that fields just couple with the current corresponding to one charge? Would it be possible for the Dirac field to couple to the electromagnetic field or to the scalar field with a coupling constant other than e?
 
Physics news on Phys.org
The charge is given by the coupling constant in the Lagrangian. It appears in the local gauge transformation at some place too, but it's not the parameter in the gauge transformation that determines the coupling constant.
 
vanhees71 said:
The charge is given by the coupling constant in the Lagrangian. It appears in the local gauge transformation at some place too, but it's not the parameter in the gauge transformation that determines the coupling constant.

Then there's some detail I misunderstood. To me the local phase symmetry ψ → ψeiq gives rise to a conserved current eψ*γ0γμ ψ, and when we use that current to couple the Dirac field to the EM field the parameter e plays the role of coupling constant. Did I get that wrong?
 
No, it's all right. You introduce the coupling constant in the principle of minimal substitution ##\partial_{\mu} \rightarrow \partial_{\mu} + i g A_{\mu}^a T^a## to make the so far only global symmetry local.
 
vanhees71 said:
No, it's all right. You introduce the coupling constant in the principle of minimal substitution ##\partial_{\mu} \rightarrow \partial_{\mu} + i g A_{\mu}^a T^a## to make the so far only global symmetry local.

Ok, so the parameter of the transformation doesn't end up bein the coupling constant then?
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top