What Does o(1) Mean in the Longest Increasing Subsequence Problem?

Naumberg
Messages
1
Reaction score
0
Problem:

"Let x_1, ..., x_n be i.i.d random variables uniformly on [0,1]. Let X be the length of the longest increasing subsequence of x_1, ..., x_n. Show that E[X] \ge (1-o(1))(1-e^{-1}) \sqrt{n}."


Hi forum!

Using the Erdos' lemma I can only deduce that E[X] \ge \frac{1}{2} \sqrt{n}, which is a weaker bound unfortunately.

I would appreciate any further ideas!

Thanks for your help,
Michael
 
Physics news on Phys.org
What does the notation "o(1)" mean in this context?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top