Another1
- 39
- 0
$$\lim_{{T}\to{\infty}}N \bar{h}\omega \left( \frac{1}{2} + \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)$$
In term $$\lim_{{T}\to{\infty}}N \bar{h}\omega \left( \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)=N \bar{h}\omega \lim_{{T}\to{\infty}}\left( \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)$$
but $$\left( \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)$$ in the form $$\frac{1}{0}$$
please give me a idea
View attachment 8741
In term $$\lim_{{T}\to{\infty}}N \bar{h}\omega \left( \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)=N \bar{h}\omega \lim_{{T}\to{\infty}}\left( \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)$$
but $$\left( \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)$$ in the form $$\frac{1}{0}$$
please give me a idea
View attachment 8741