What Initiates the Propagation of Light in Maxwell's Equations?

  • Thread starter Thread starter stringbean
  • Start date Start date
  • Tags Tags
    Light
AI Thread Summary
Maxwell's equations suggest that electric and magnetic waves can self-propagate and vary over time, but the mechanism for their spatial propagation remains unclear. The discussion raises questions about how and where these waves begin, particularly whether non-varying electric and magnetic fields can initiate waves at a distance. It is noted that changes in electric or magnetic fields should propagate at the speed of light, rather than instantaneously affecting distant locations. The analogy of a dipole antenna illustrates how oscillating currents create spatially and temporally varying fields, emphasizing the relationship between kinetic and potential energy in wave formation. Overall, the conversation explores the complexities of electromagnetic wave initiation and propagation, highlighting the need for further clarification in electrodynamics.
stringbean
Messages
8
Reaction score
0
I've been reading my physics book about Maxwell's equations. It makes sense to me that an electric and magnetic wave could be self supportive and vary with time. What doesn't make sense to me is why it should travel through space, in other words vary in space. The derivation of the wave equation from Maxwell's equations is very suggestive if not proof. I just want to know how you could know where the wave begins and what starts it. And if non varying electric and magnetic fields start it and are present far away instantaneously, why don't the electromagnetic waves start far away as well. The book I'm reading only explains it by saying that the magnetic and electric fields start the waves nearby and don't give a reason why they should think that. Do all changes in values of electric or magnetic fields have to propagate out at the speed of light or do places far away change instantaneously. Maybe I should differentiate between electric fields caused by changing magnetic fields from electric fields caused by charges but electrodynamic books don't seem to differentiate.
 
Science news on Phys.org
The easiest way to think of this is to consider a standard dipole antenna. In a dipole antenna you have a current sloshing back and forth inside the antenna, but the current can't leave the ends of the antenna, so actually the amplitude of the current is highest in the middle and zero on the ends. This spatially and temporally varying current is the source of a spatially and temporally varying magnetic field. Similarly with charge and the e-fields, except that the amplitude of the charge is highest on the ends.
 
Pretty much all waves are caused by an oscillation between kinetic energy and potential energy. There is a storage of energy in one form and release in another that are complimentary and this implies some sort of spring (as a crude physical analogy). Or actually 2 springs operating in tandem.

The loading of the spring in the case of light is the build up (compression in terms of volume) of localized electric energy and then its release. Concurrently there is a release of magnetic energy followed by a build up in a way that both lag each by 90 degrees (or minus 90 degrees) when plotted over time.
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...

Similar threads

Replies
4
Views
2K
Replies
41
Views
4K
Replies
6
Views
13K
Replies
6
Views
2K
Replies
11
Views
2K
Replies
65
Views
5K
Replies
27
Views
4K
Back
Top