plxmny said:
Hello Gals,
But what in the name of sweet aunt petunia is a rank 3 tensor?
Plx Mny
m=(((1,2),(2,4)),((2,3),(5,6))) is a rank 3 tensor with dimension 2, a vector of matrices.
A tensor is a nested list.
An example Eigenmath
http://eigenmath.net/ script with a rank 3 tensor is:
--Maxwell equations in tensor form.
--See the book Gravitation p. 81.
--
-- F + F + F = 0
-- ab,c bc,a ca,b
--
-- ab a
-- F = 4 pi J
-- ,b
--
--For this demo, use circular polarized light.
--
EX = sin(t+z)
EY = cos(t+z)
EZ = 0
BX = cos(t+z)
BY = -sin(t+z)
BZ = 0
FDD = (( 0, -EX, -EY, -EZ),
( EX, 0, BZ, -BY),
( EY, -BZ, 0, BX),
( EZ, BY, -BX, 0)) --See p. 74. Here, DD means "down down" indices.
X = (t,x,y,z) --Coordinate system
FDDD = d(FDD,X) --Gradient of F
T1 = transpose(transpose(FDDD,2,3),1,2) --Transpose bca to abc
T2 = transpose(transpose(FDDD,1,2),2,3) --Transpose cab to abc
check(FDDD + T1 + T2 = 0)
guu = ((-1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1))
FDDU = contract(outer(FDDD,guu),3,4) --Easier to make FDDU than FUUD.
check(contract(FDDU,2,3) = 0) --For light J is zero.
"OK"
The gradient of a rank 2 tensor (matrix) in a coordinate system (vector), is a rank 3 tensor. (GAMUDD) in example below.
Another example is the gradient of the metric in general relativity which is the connection.
An example of a 4th rank tensor is the Riemann curvature of spacetime. RUDDD in http://eigenmath.net/examples/bondi-metric.txt .