The problem with "relativistic mass" is entirely pedagogical. If you already know what you're doing and like to use it, there's really no issue (except that other people who know what they're doing might look at you funny if you use it in conversation).
DrStupid said:
... resistance to acceleration is not suitable as defining property in relativity.
I would agree with this.
In Newtonian mechanics, the turns of phrase "measure of inertia" and "resistance to acceleration" refer to mass. There's not much room for ambiguity here.
In special relativity, these concepts become ambiguous or even meaningless.
First, "resistance to [3-]acceleration": in general, there simply is no multiplicative factor (let alone a constant of proportionality) that tells you how an object will accelerate under the influence of a given 3-force. Rather, an object's total energy tells you how it will accelerate under the influence of
a particular pairing of 3-force and 3-velocity.
As for "measure of inertia," well, that might mean all sorts of things. Maybe the multiplicative factor relating 3-velocity and 3-momentum? That's total energy (which isn't a constant of proportionality!). Maybe just the frame-independent part of that quantity? That's rest energy (mass). Maybe the multiplicative factor relating 3-acceleration and 3-force? That doesn't exist (see above). Maybe the multiplicative factor relating proper acceleration and proper force (i.e., relating 3-acceleration and 3-force in the object's rest frame)? That's rest energy (mass)—and this one's actually a constant of proportionality.
If we're talking about 4-vectors, though, we can restore meaning to these concepts. An object's rest energy (mass) is its measure of "spacetime inertia," if you will. It's the object's resistance to 4-acceleration under the influence of a 4-force. The more rest energy (mass) an object has, the more it resists change to its (direction of) 4-velocity. It's the constant of proportionality relating 4-acceleration to 4-force, and also 4-velocity to 4-momentum.