What is the Cardinality of Sets X, Y, and A, B, C?

  • Thread starter Thread starter Aeonitis
  • Start date Start date
  • Tags Tags
    Cardinality Sets
Aeonitis
Messages
4
Reaction score
0
Hey guys, this is my first post, (Hi) was just wondering if i could get your help. I'm studying for my repeats and you guys can save me.

If X = {1,2,3,4}, Y = {2,4,6} what is the cardinality of the following sets?

(i) A = {x|x mod 2 = 0 and 0 <=x<=20}
(ii) B = X * X * Y
(iii) C = {(x,y)|x ≠ y and x,y ∈ X}

Please explain your train of thought in solving this. I am trying hard to understand the right way to approach this question quickly, Thank you for your time guys...
 
Last edited:
Physics news on Phys.org
I've tried them out, with the following answers:-

(i) A = {2,4,6,8,10,12,14,16,18,20}, Therefore A has a cardinality of 10 (elements).
(ii) B = Cartesian Product of 'X times X times Y' or better yet '4 by 4 by 3' elements each to give a total of 48 in cardinality?!
(iii) C = UNSOLVED!

I want to make sure someone agrees with me having the right answers since you're the pros

I really want to know what the '|' symbol stands for or means, as in 'x|x'. Hard to specifically search for in a book.
 
Figured it out. I will post the full answer for future questioneers

(i) A = {2,4,6,8,10,12,14,16,18,20}, Therefore A has a cardinality of 10 (elements).
(ii) B = Cartesian Product of 'X times X times Y' or better yet '4 by 4 by 3' elements each to give a total of 48 in cardinality?!

(iii) C = {(x,y)|x ≠ y and x,y ∈ X}

pairs x,y {such as (1,1),(1,2),etc...} drawn from set X with a cardinality of '4 by 4 = 16' as in the question "x,y ∈ X". Due to the statement 'x ≠ y' pairs can't come in equals, discarding the following four sets (1,1),(2,2),(3,3),(4,4). The end product is 16-4 giving a cardinality of 12 for set 'C'.
 
How much is 0 (mod 2)? In the set A, the possible values of x include 0, don't they? Anyway, I'm sure you remember that any number that is 0(mod2) is even and vice-versa.
 
Yes i do, and thanks for pointing that out in any case, it's always the little things that count >_<
 
C has the cardinality|X*X| - |x|.

Because for every x in X, there is a pair (x,x), which are exactly the ones not in {(x,y) : x != y /\ x,y in X}
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
5
Views
2K
Replies
5
Views
2K
Replies
2
Views
2K
Replies
9
Views
4K
Replies
2
Views
1K
Replies
18
Views
4K
Replies
15
Views
2K
Replies
2
Views
2K
Back
Top