What is the Connection Between Matrix Trace and Endomorphism?

  • Thread starter Thread starter tamintl
  • Start date Start date
  • Tags Tags
    Trace
tamintl
Messages
74
Reaction score
0
Consider the 4x4 matrices
A =
(1 2 3 4)
(5 6 7 8)
(9 10 11 12)
(13 14 15 16)B=
(1 2 3 4)
(8 5 6 7)
(11 12 9 10)
(14 15 16 13)

The question I was asked was the following: Show that there does not exist an endomorphism f: ℝ4 -> ℝ4 and basis 'a' and 'b' of R^4, such that A = a[f]a and B=b[f]b.

I have read in my notes and found that if the traces of the two matrices are not the same then they cannot represent the same endomorphism.

I am struggling to see the intuition behind this though.

Can anyone shed some light?

Many thanks
 
Physics news on Phys.org
The trace of a linear transformation is the sum of the eigenvalues of the matrix, and so is independent of the choice of basis.

Alternatively, you can use the fact that Tr(AB) = Tr(BA) to show that if you conjugate a matrix by another matrix the trace is unchanged.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Replies
5
Views
2K
Replies
28
Views
3K
Replies
1
Views
2K
Replies
5
Views
2K
Replies
2
Views
3K
Replies
7
Views
4K
Replies
2
Views
1K
Replies
2
Views
6K
Back
Top