What is the Definition of Continuity in Minkowski Space?

cosmic dust
Messages
123
Reaction score
0
How "continuity" of a map Τ:M→M, where M is a Minkowski space, can be defined? Obviously I cannot use the "metric" induced by the minkowskian product:
x\cdoty = -x^{0}y^{0}+x^{i}y^{i}
for the definition of coninuity; it is a misinformer about the proximity of points. Should I use the Euclidean metric instead?

Thank's...
 
Physics news on Phys.org
Minkowski space-time is just ##\mathbb{R}^{4}## with the canonical Euclidean topology. Continuity of endomorphisms of Minkowski space-time is with respect to this topology.
 
  • Like
Likes 1 person
I took the wikipedia's definition of Minkowski space: a 4-D real vector space with a symmetric, bilinear, non-degenerate quadratic form with signature (1,3). From this point of view, can a consistent metric induced by that quadratic form? If not, then according to your comment, I will have to make use and of the Eucliden norm on that vector space, in order to define continuity.

Right?
 
cosmic dust said:
I took the wikipedia's definition of Minkowski space: a 4-D real vector space with a symmetric, bilinear, non-degenerate quadratic form with signature (1,3). From this point of view, can a consistent metric induced by that quadratic form? If not, then according to your comment, I will have to make use and of the Eucliden norm on that vector space, in order to define continuity.
I've never seen pseudo-Riemannian metric tensors on vector spaces being used to induce a topology on the vector space but that's not to say that it isn't defined (you can define it in the same way). The canonical topology on Minkowski space-time would just be that generated by the base of open balls of the Euclidean metric yes. There are other topologies you can endow as well of course and they don't have to stem from a metric.
 
  • Like
Likes 1 person
The beautiful [math] book "The Geometry of Minkowski Spacetime: An Introduction to the Mathematics of the Special Theory of Relativity" by Naber has an appendix that discusses topology for Minkowski spacetime.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top