cosmic dust
- 123
- 0
How "continuity" of a map Τ:M→M, where M is a Minkowski space, can be defined? Obviously I cannot use the "metric" induced by the minkowskian product:
x\cdoty = -x^{0}y^{0}+x^{i}y^{i}
for the definition of coninuity; it is a misinformer about the proximity of points. Should I use the Euclidean metric instead?
Thank's...
x\cdoty = -x^{0}y^{0}+x^{i}y^{i}
for the definition of coninuity; it is a misinformer about the proximity of points. Should I use the Euclidean metric instead?
Thank's...