What is the Definition of Continuity in Minkowski Space?

cosmic dust
Messages
123
Reaction score
0
How "continuity" of a map Τ:M→M, where M is a Minkowski space, can be defined? Obviously I cannot use the "metric" induced by the minkowskian product:
x\cdoty = -x^{0}y^{0}+x^{i}y^{i}
for the definition of coninuity; it is a misinformer about the proximity of points. Should I use the Euclidean metric instead?

Thank's...
 
Physics news on Phys.org
Minkowski space-time is just ##\mathbb{R}^{4}## with the canonical Euclidean topology. Continuity of endomorphisms of Minkowski space-time is with respect to this topology.
 
  • Like
Likes 1 person
I took the wikipedia's definition of Minkowski space: a 4-D real vector space with a symmetric, bilinear, non-degenerate quadratic form with signature (1,3). From this point of view, can a consistent metric induced by that quadratic form? If not, then according to your comment, I will have to make use and of the Eucliden norm on that vector space, in order to define continuity.

Right?
 
cosmic dust said:
I took the wikipedia's definition of Minkowski space: a 4-D real vector space with a symmetric, bilinear, non-degenerate quadratic form with signature (1,3). From this point of view, can a consistent metric induced by that quadratic form? If not, then according to your comment, I will have to make use and of the Eucliden norm on that vector space, in order to define continuity.
I've never seen pseudo-Riemannian metric tensors on vector spaces being used to induce a topology on the vector space but that's not to say that it isn't defined (you can define it in the same way). The canonical topology on Minkowski space-time would just be that generated by the base of open balls of the Euclidean metric yes. There are other topologies you can endow as well of course and they don't have to stem from a metric.
 
  • Like
Likes 1 person
The beautiful [math] book "The Geometry of Minkowski Spacetime: An Introduction to the Mathematics of the Special Theory of Relativity" by Naber has an appendix that discusses topology for Minkowski spacetime.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top