MHB What is the definition of real numbers in terms of rational sequences?

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Smile)

We define the set $U=\mathbb{Z} \times (\mathbb{Z}-\{0\})$ and over $U$ we define the following relation $S$:

$$\langle i,j \rangle S \langle k,l \rangle \iff i \cdot l=j \cdot k$$

$$\mathbb{Q}=U/S=\{ [\langle i, j \rangle ]_S: i \in \mathbb{Z}, j \in \mathbb{Z} \setminus \{0\} \}$$

Constitution of real numbers (Cantor)

We consider the space $X$ of sequences $(a_n)_{n \in \mathbb{N}}$ of rational numbers that satisfy the following Cauchy Criterion:"for each rational number $\epsilon>0$ there is a $n_0 \in \omega$ such that for all $n \in \omega$ and for all $m \in \omega$ with $n>n_0$ and $m>n_0$ it holds that $|a_n-a_m|< \epsilon$"

At $X$ we define the relation $\sim$ for $(x_n)_{n \in \omega}, (y_n)_{n \in \omega} \in X$
$(x_n)_{n \in \omega} \sim (y_n)_{n \in \omega}$ iff $\lim (x_n-y_n)=0$

(Definition of $\lim a_n=0$ for $(a_n)_{n \in \omega}$ sequence with $a_n \in \mathbb{Q}, n \in \omega$:
$\lim a_n=0$ iff for each rational $\epsilon>0, \exists n_0 \in \omega$ such that for all $n \in \omega$ with $n>n_0$ it holds that $|a_n|< \epsilon$)It can be proven that the relation $\sim$ is an equivalence relation on $X$ and $X/ \sim$ is defined to be the set of real numbers $\mathbb{R}$.So that means that the set $\mathbb{R}$ is a set that contains the rational sequences that converge, right?
If so, could you explain me why it is like that? (Thinking)
 
Physics news on Phys.org
Hi,

That means that $\Bbb{R}$ is the "complection" (I don't really know if complection is an english word :confused:) of the metric space given by the rationals with the absolute value.

I mean, when you say "contains the rational sequences that converge" is right, but it's not the same convergence on $\Bbb{Q}$ than $\Bbb{R}$. A sequence of rational numbers convergent to $\pi$ over the reals is not convergent over $\Bbb{Q}$.

This is just a definition so it's like that because we want it to be like that.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top