What is the Degree of a Bezier Spline?

  • Thread starter Thread starter Asuralm
  • Start date Start date
  • Tags Tags
    Degree
Asuralm
Messages
35
Reaction score
0
Spline degree??

Dear all:
I have been read a few definition of the degree of a bezier spline. But I still do not understand what's the exact meaning of it. As I understand, if the spline function is n-differentiable then it's of degree n-1. Is this correct? Another way is that if the control point position is determined by n neighbours of the previous level then the spline curve is of degree n-1.

Am I understanding correct?

Could anyone give me some more straight-forward and easy understandable explanations please?

Thanks
 
Mathematics news on Phys.org
If the spline is n-differentiable isn't the degree n+1, not n-1?

I may be thinking of a different "degree". A spline is a piece-wise polynomial such that a certain number of derivatives are continuous. Of course, that depends completely upon the degree of the polynomial since the higher degree gives you more constants to match. A "degree 1" spline is a "broken line" that is continuous but not differentiable at all. A "degree 2" spline is a piecewise quadratic function that is continuous and has continuous derivative at the knots but not second derivative. A "degree-3" (cubic) spline is piecwise cubic, having continuous second derivative at the knots.
 
If the spline is n-differentiable isn't the degree n+1, not n-1?

Yes you are right. It's quite helpful. Thank you.

But another problem is what's the relation between the degree of the spline with the subdivision matrix S?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top