What is the derivation of the ABC magnetic field components?

Click For Summary

Discussion Overview

The discussion revolves around the derivation of the ABC magnetic field components defined by specific equations for the magnetic field in three Cartesian directions (B1, B2, B3). Participants explore the mathematical properties and physical implications of these components, including their behavior and potential applications in fluid dynamics and astrophysics.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant requests the derivation of the ABC magnetic field components, providing the equations for B1, B2, and B3.
  • Another participant notes that the divergence of the magnetic field is zero and suggests analyzing the components by setting B and C to zero to understand the behavior of A.
  • A third participant claims that the magnetic field represents a physical situation, specifically a kinetic dynamo in the solar corona, and seeks a derivation using the curl of B and Euler's equation.
  • A later reply discusses the differential equation related to the curl of B and suggests that the solution should be consistent with the Biot-Savart law, proposing that the A, B, and C terms satisfy the equation for certain values of k.

Areas of Agreement / Disagreement

Participants express differing views on the physical representation of the magnetic field components and the necessity of deriving them. While some agree on the mathematical properties, there is no consensus on the implications or the derivation process itself.

Contextual Notes

There are unresolved assumptions regarding the physical context of the magnetic field components and the specific conditions under which the proposed equations hold true. The discussion includes various mathematical approaches without a definitive resolution.

Nakul Aggarwal
Messages
2
Reaction score
0
Can somebody please post the derivation of the ABC magnetic field components whose magnetic field components in the three cartesian directions(B1, B2, B3) are given by the following:
B1=A*sin(z)+C*cos(y)
B2=B*sin(x)+A*cos(z)
B3=C*sin(y)+B*cos(x)
 
Physics news on Phys.org
An interesting magnetic field pattern. I'm going to presume this is not a homework problem because it would then belong in the homework section. ## \\ ## The first thing I observed is that ## \nabla \cdot \vec{B}=0 ##. ## \\ ## To analyze what it is, you can set ## B=0 ## and ## C=0 ##, and see what ## A ## does by itself. The ## A ## term causes a magnetic field with constant amplitude, (amplitude =## A ##), in the x-y plane that spirals around as ## z ## is increased. The cycle of the spiral for ## z ## is ## \Delta z=\frac{1}{2 \pi } ##. The ## B ## and ## C ## terms behave similarly, and the results are superimposed, (with ## B ## acting in the y-z plane, and ## C ## in the x-z plane). Perhaps someone else can see something else of interest. One item is it seems to have infinite extent, and does not appear to represent a real physical system.
 
True, it is a force-free helical steady-state solution of the Euler's equation in fluid dynamics. It does represent a physical situation as if you set A=1,B=1 and C=1, it represents a kinetic dynamo and this field is present in the solar corona as well. It has a regular and chaotic trajectory after plotting its Poincare map and calculating its Liapunov Exponents. I just need how it is derived from ##\nabla\cross\vec{B}=constant*\vec{B}## and using Euler's Equation
 
Given ## \nabla \times \vec{B}=k \, \vec{B} ##, this differential equation does have an integral solution. Sometimes there are additional homogeneous solutions that need to be added, but it is basically of the Biot-Savart form: Maxwell's equation ## \nabla \times \vec{B} =\mu_o \vec{J} ## has the Biot-Savart solution: ## \vec{B}(\vec{x})=\frac{\mu_o}{4 \pi} \int \frac{\vec{J}(\vec{x'}) \times (\vec{x}-\vec{x'})}{|\vec{x}-\vec{x'}|^3} \, d^3x' ##. ## \\ ## If your last equation in the previous post is correct, it should be possible to at least show that the solution is consistent, i.e. if you replace ## \mu_o \vec{J} ## by ## k \vec{B} ##, with the form as provided, you should get consistency on both sides. ## \\ ## Edit: The better way would be to simply put in the solution of ## \nabla \times \vec{B}=k \, \vec{B} ##, and solve for ## k ##. The ## A ## term satisfies it for ## k=1 ## , and I believe the ## B ## and ## C ## do also. Starting with ## \nabla \times \vec{B}=\vec{B} ##, it really is only necessary to show that your solution satisfies the differential equation. It is unnecessary to derive anything.
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
1K