What is the derivation of the ABC magnetic field components?

AI Thread Summary
The discussion focuses on the derivation of the ABC magnetic field components defined by specific Cartesian equations. It notes that the divergence of the magnetic field is zero, indicating a force-free condition. The behavior of the components A, B, and C is analyzed, revealing that they create spiraling magnetic fields in different planes. The solution is linked to Euler's equation and the Biot-Savart law, suggesting that the magnetic field can be consistent with these equations. Ultimately, it emphasizes that demonstrating the solution's satisfaction of the differential equation is sufficient, rather than requiring a full derivation.
Nakul Aggarwal
Messages
2
Reaction score
0
Can somebody please post the derivation of the ABC magnetic field components whose magnetic field components in the three cartesian directions(B1, B2, B3) are given by the following:
B1=A*sin(z)+C*cos(y)
B2=B*sin(x)+A*cos(z)
B3=C*sin(y)+B*cos(x)
 
Physics news on Phys.org
An interesting magnetic field pattern. I'm going to presume this is not a homework problem because it would then belong in the homework section. ## \\ ## The first thing I observed is that ## \nabla \cdot \vec{B}=0 ##. ## \\ ## To analyze what it is, you can set ## B=0 ## and ## C=0 ##, and see what ## A ## does by itself. The ## A ## term causes a magnetic field with constant amplitude, (amplitude =## A ##), in the x-y plane that spirals around as ## z ## is increased. The cycle of the spiral for ## z ## is ## \Delta z=\frac{1}{2 \pi } ##. The ## B ## and ## C ## terms behave similarly, and the results are superimposed, (with ## B ## acting in the y-z plane, and ## C ## in the x-z plane). Perhaps someone else can see something else of interest. One item is it seems to have infinite extent, and does not appear to represent a real physical system.
 
True, it is a force-free helical steady-state solution of the Euler's equation in fluid dynamics. It does represent a physical situation as if you set A=1,B=1 and C=1, it represents a kinetic dynamo and this field is present in the solar corona as well. It has a regular and chaotic trajectory after plotting its Poincare map and calculating its Liapunov Exponents. I just need how it is derived from ##\nabla\cross\vec{B}=constant*\vec{B}## and using Euler's Equation
 
Given ## \nabla \times \vec{B}=k \, \vec{B} ##, this differential equation does have an integral solution. Sometimes there are additional homogeneous solutions that need to be added, but it is basically of the Biot-Savart form: Maxwell's equation ## \nabla \times \vec{B} =\mu_o \vec{J} ## has the Biot-Savart solution: ## \vec{B}(\vec{x})=\frac{\mu_o}{4 \pi} \int \frac{\vec{J}(\vec{x'}) \times (\vec{x}-\vec{x'})}{|\vec{x}-\vec{x'}|^3} \, d^3x' ##. ## \\ ## If your last equation in the previous post is correct, it should be possible to at least show that the solution is consistent, i.e. if you replace ## \mu_o \vec{J} ## by ## k \vec{B} ##, with the form as provided, you should get consistency on both sides. ## \\ ## Edit: The better way would be to simply put in the solution of ## \nabla \times \vec{B}=k \, \vec{B} ##, and solve for ## k ##. The ## A ## term satisfies it for ## k=1 ## , and I believe the ## B ## and ## C ## do also. Starting with ## \nabla \times \vec{B}=\vec{B} ##, it really is only necessary to show that your solution satisfies the differential equation. It is unnecessary to derive anything.
 
Last edited:
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top