What is the drag coefficient of a windsock?

  • Thread starter Thread starter tinkeringone
  • Start date Start date
  • Tags Tags
    Drag
AI Thread Summary
The drag coefficient of a windsock is not commonly specified, leading to difficulty in finding precise values. A search for the drag coefficient yields various resources and images that may provide insights. Users are encouraged to explore these links for more detailed information. The topic highlights the challenge of obtaining specific aerodynamic data for windsocks. Overall, further research is needed to determine an accurate drag coefficient for this type of object.
tinkeringone
Messages
15
Reaction score
0
Does anyone know what the drag coefficient of a windsock is?
 
Physics news on Phys.org
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top