MHB What is the GCD and LCM of 35280 and 4158?

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The greatest common divisor (GCD) of 35280 and 4158 is calculated as 126, derived from the prime factorization of both numbers. The least common multiple (LCM) is determined to be 1164240, which incorporates the highest powers of all prime factors present in either number. The discussion emphasizes the importance of understanding the definitions and calculations of GCD and LCM. Additionally, a correction is made regarding the terminology, clarifying that it is "least common multiple" (LCM) rather than "least common divisor" (LCD). Overall, the calculations demonstrate the application of prime factorization in finding GCD and LCM.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Determine
$gcd(2^4 \cdot 3^2 \cdot 5 \cdot 7^2, 2 \cdot 3^3 \cdot 7 \cdot 11)=\boxed{126}$
and
$lcd(2^3 \cdot 3^2 \cdot 5,2 \cdot 3^3 \cdot 7 \cdot 11)=\boxed{83160}$
the number in the box is what W$\vert$A returned
ok i was doing stuff like this about a year ago but forgot
so assume to start
$gcd(35280,4158)$
but can't we take advantage of the powers
 
Last edited:
Physics news on Phys.org
prime factorization …

$35280 = 2^4 \cdot 3^2 \cdot 5 \cdot 7^2$
$4158 = 2 \cdot 3^3 \cdot 7 \cdot 11$

greatest common divisor includes the least power of all common factors …
$2 \cdot 3^2 \cdot 7 = 126$

least common multiple includes the greatest power of all common factors and the factors the two values do not have in common …
$2^4 \cdot 3^3 \cdot 5 \cdot 7^2 \cdot 11 = 1164240$
 
Mahalo
so its just choosing the powers then calculate
 
karush said:
Mahalo
so its just choosing the powers then calculate
Well, it is knowing what these things are, what their definitions are!

And note that it is "least common multiple", "lcm", NOT "lcd".
 
corrected
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 29 ·
Replies
29
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K