What is the Length of a Tensioned String?

AI Thread Summary
A pulse travels the length of a tensioned string in 0.1 seconds, with the tension created by a weight 100 times the mass of the string. The length of the string is calculated to be approximately 9.8 meters using the equation v=√(F/u). The discussion also explores the equation for the third normal mode, yielding y_3 = (A_3)sin(n.pi.x/L)cos((w_n)t). There is uncertainty regarding the amplitude of the wave and the simplicity of the final answer raises doubts about the calculations. Overall, the thread emphasizes the importance of methodical reasoning in solving physics problems.
BOYLANATOR
Messages
193
Reaction score
18

Homework Statement


A pulse takes 0.1s to travel the length of a string. The tension in the string is provided by passing the string over a pulley to a weight which has 100 times the mass of the string.
What is the length (L) of the string?
What is the equation of the third normal mode.

Homework Equations


v=√(F/u) u=m/L


The Attempt at a Solution


We have L/t = √(100.m.g/(m/L) where g = surface gravity

So 100L^2 = 100gL
so L= magnitude(g) = 9.8 m

This type of question was not covered directly in our notes and I am unsure if my working is correct.
Thanks for any help.
 
Physics news on Phys.org
Welcome to PF.
Reasoning seems fine to me - notice how the number end up all nice?
Did you do the next bit?
 
Last edited:
It was the simplicity in the final answer that made me doubt it.
Thank you, but what is LQ?

y_3 = (A_3)sin(n.pi.x/L)cos((w_n)t)

We have 1.5 waves in a time of 0.1s. So w = 30.pi radians
I don't see how I can get the amplitude.

So y = A sin(3.pi.x/9.8)cos(30.pi.t)
 
(where w is angular frequency)
 
but what is LQ?
A spelling mistake. Thanks.

angular frequency is radiens per second.
I don't see how I can get the amplitude.
me neither.
It was the simplicity in the final answer that made me doubt it.
I suppose with all the computer-randomized problems you get these days, nice numbers must be rare.

Note: cannot comment on answers as such - only methods and reasoning.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top