What is the limit of (1-1/n)^n as n approaches infinity?

  • Thread starter Thread starter intenzxboi
  • Start date Start date
  • Tags Tags
    Limit
intenzxboi
Messages
98
Reaction score
0

Homework Statement



give the limit if it exist of (1-1/n)^n n=1 to infinity

the teacher wrote:
lim n goes to infinity (1+x/n)^n = e^x

so therefore
lim n goes to infinity (1-1/n)^n = e^-1

can someone explain this to me.
 
Physics news on Phys.org
how I'm i suppose to know that

(1+x/n)^n = e^x ??
 
intenzxboi said:
how I'm i suppose to know that

(1+x/n)^n = e^x ??

What is your definition of "e"?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top