CornMuffin
- 51
- 5
Homework Statement
Let (X_k,d_k), 1\leq k<\infty be metric spaces
Let X=\prod _{k=1}^{\infty} X_k be their Cartesian product,
that is, let X be the set of sequences (x_1,x_2,...), where x_j\in X_j for 1\leq j < \infty
Show that a sequence \left\{x^{(k)}\right\}_{k=1}^{ \infty } converges in X if and only if \left\{x_j^{(k)}\right\}_{k=1}^{ \infty } converges in X_j for each j \geq 1.
Homework Equations
The Attempt at a Solution
Assume \left\{x^{(k)}\right\}_{k=1}^{ \infty } converges in X.
then \left\{x^{(k)}\right\}_{k=1}^{ \infty } = (a_{11},a_{21},...),(a_{12},a_{22},...),... where a_{ik} \in X_i
So, \left\{x^{(k)}\right\}_{k=1}^{ \infty } converges to c_i
Assume \left\{x_j^{(k)}\right\}_{k=1}^{ \infty } converges in X_j for each j \geq 1
so, \left\{x^{(k)}\right\}_{k=1}^{ \infty } = (a_{11},a_{21},...),(a_{12},a_{22},...),... where \left\{x_j^{(k)}\right\}_{k=1}^{ \infty } = a_{j1},a_{j2},... converges to c_j
So, \left\{x^{(k)}\right\}_{k=1}^{ \infty } converges to (c_1,c_2,...)