skrat said:
Now you got me confused. You said I should solve the ballance equation for each plate individually, so $$\frac{\cos \varphi_{\text{left}}}{\varphi_{\text{left}}}=\frac{1}{2s_0p}(p(h+\Delta h)+{f}')$$ for the left plate and $$\frac{\cos \varphi_{\text{right}}}{\varphi_{\text{right}}}=\frac{1}{2s_0p}(ph+f)$$ for the right plate where both of the transcendental equations have known parameters and can be numerically solved.
But now you somehow also provided a relation between ##\varphi_{\text{left}}## and ##\varphi_{\text{right}}## and I have no idea where you got this?
We are dealing with a non-symmetric problem here (h
left≠h
right). Therefore, we can't simply take the solution for the symmetric case and cobble up a guess for the non-symmetric case and think that we are going to get the right answer. We actually have to redo the problem for the non-symmetric case.
The equation
$$φ_{right}=φ_{left}+\frac{p}{T}(2s_0)\tag{1}$$
follows directly from the equation$$\frac{dφ}{ds}=\frac{p}{T}$$
which we derived in our earlier posts from the differential force balance equation on the membrane. For the non-symmetric case, the force balances on each of the plates are:
$$2T\cos(φ_{left})=ph_{left}\tag{2}$$
$$2T\cos(φ_{right})=ph_{right}\tag{3}$$
Eqns. 1 - 3 provide a set of three non-linear equations in the three unknowns φ
left, φ
right, and p/T. For the non-symmetric case, one needs to solve these three equations to establish the solution.
Eqns. 1 - 3 reduce to the corresponding relationships for the symmetric case when the plate h's are the same. For the symmetric case,
$$φ_{left}=-φ_{right}\tag{symmetric case}$$
so that
$$φ_{right}=-φ_{right}+\frac{p}{T}(2s_0)$$
and
$$φ_{right}=\frac{p}{T}s_0$$
This is the equation we derived earlier in the symmetric development.
Chet