- 725
- 3
Why "Tri-Bimaximal"?
\displaymath{U_{PMNS}=\begin{pmatrix}<br /> \sqrt{2/3}& 1/\sqrt{3}& 0\\<br /> -1/\sqrt{6}& 1/\sqrt{3}& 1/\sqrt{2}\\<br /> 1/\sqrt{6}& -1/\sqrt{3}& 1/\sqrt{2}\end{pmatrix}}
This matrix implies \theta_{13}=0, \sin \theta_{12} = 1/\sqrt{3} (ie. not maximal mixing) and \theta_{23}=\pi/4 (ie. maximal mixing)
OK, to my question, WHY do we call this matrix "Tri-Bimaximal"? How does this name come about? Two large mixing angles and the 1/\sqrt{3}?
\displaymath{U_{PMNS}=\begin{pmatrix}<br /> \sqrt{2/3}& 1/\sqrt{3}& 0\\<br /> -1/\sqrt{6}& 1/\sqrt{3}& 1/\sqrt{2}\\<br /> 1/\sqrt{6}& -1/\sqrt{3}& 1/\sqrt{2}\end{pmatrix}}
This matrix implies \theta_{13}=0, \sin \theta_{12} = 1/\sqrt{3} (ie. not maximal mixing) and \theta_{23}=\pi/4 (ie. maximal mixing)
OK, to my question, WHY do we call this matrix "Tri-Bimaximal"? How does this name come about? Two large mixing angles and the 1/\sqrt{3}?