MHB What is the Outcome of the Christmas Math Challenge Equation?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Product Value
Click For Summary
The discussion centers around a Christmas Math Challenge involving the equation \(\left(a+\dfrac{1}{a}+1 \right)\left(a+\dfrac{1}{a} \right)=1\) and seeks to find the value of \(\left(a^{20}+\dfrac{1}{a^{20}}+1 \right)\left(a^{20}+\dfrac{1}{a^{20}} \right)\). Participants express holiday greetings and share their solutions to the challenge. One user, chisigma, successfully solves the problem, prompting appreciation from others for their participation and insights. The thread combines festive wishes with mathematical problem-solving, creating a cheerful atmosphere.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hey MHB, I am back, fully recover from food poisoning and first off, I want to take this opportunity to wish everyone and their family a very happy and Merry Christmas, much luck, good health and all good things of life. I hope you guys are able to spend it with loved ones!(Inlove)

1469966_10151725500306050_1957576524_n.jpg


I want to also present a "Christmas Math Challenge" as a gift to my friends (all of you are my friends, aren't you?:p) here today!:o$a$ satisfies the equation $\left(a+\dfrac{1}{a}+1 \right)\left(a+\dfrac{1}{a} \right)=1$.

What is the value of $\left(a^{20}+\dfrac{1}{a^{20}}+1 \right)\left(a^{20}+\dfrac{1}{a^{20}} \right)$?
 
Mathematics news on Phys.org
anemone said:
Hey MHB, I am back, fully recover from food poisoning and first off, I want to take this opportunity to wish everyone and their family a very happy and Merry Christmas, much luck, good health and all good things of life. I hope you guys are able to spend it with loved ones!(Inlove)

1469966_10151725500306050_1957576524_n.jpg


I want to also present a "Christmas Math Challenge" as a gift to my friends (all of you are my friends, aren't you?:p) here today!:o$a$ satisfies the equation $\left(a+\dfrac{1}{a}+1 \right)\left(a+\dfrac{1}{a} \right)=1$.

What is the value of $\left(a^{20}+\dfrac{1}{a^{20}}+1 \right)\left(a^{20}+\dfrac{1}{a^{20}} \right)$?

... with simple steps You find that $\displaystyle a^{4} + a^{3} + a^{2} + a + 1 = 0$, i.e. a must be one of the fifth roots of 1 with the only exclusion of a= 1, so that in any case is $\displaystyle a^{20}=1$...

View attachment 1800

Merry Christmas from Serbia

$\chi$ $\sigma$
 

Attachments

  • eb191d59c14248f1e362dd5eb1d3102c.jpg
    eb191d59c14248f1e362dd5eb1d3102c.jpg
    42.1 KB · Views: 114
12daysopt02.jpg


On the first day of Christmas
my true love sent to me:
A Partridge in a Pear Tree

On the second day of Christmas
my true love sent to me:
2 Turtle Doves
and a Partridge in a Pear Tree

On the third day of Christmas
my true love sent to me:
3 French Hens
2 Turtle Doves
and a Partridge in a Pear Tree

On the fourth day of Christmas
my true love sent to me:
4 Calling Birds
3 French Hens
2 Turtle Doves
and a Partridge in a Pear Tree

On the fifth day of Christmas
my true love sent to me:
5 Golden Rings
4 Calling Birds
3 French Hens
2 Turtle Doves
and a Partridge in a Pear Tree

On the sixth day of Christmas
my true love sent to me:
6 Geese a Laying
5 Golden Rings
4 Calling Birds
3 French Hens
2 Turtle Doves
and a Partridge in a Pear Tree


Expand to $a^4+a^3+a^2+a+1=0$.
Multiply by $(a-1)$ to give $a^5-1=0$.
So $a^5 = 1$ and therefore $a^{20}=1$ (with $a$ neither rational nor real).
Substitute to find:
$$(1+\frac 1 1 + 1)(1 + \frac 1 1) = 6$$

It's 6 Geese a Laying!


Merry Chrismas! (Clapping) (Inlove)
 
chisigma said:
... with simple steps You find that $\displaystyle a^{4} + a^{3} + a^{2} + a + 1 = 0$, i.e. a must be one of the fifth roots of 1 with the only exclusion of a= 1, so that in any case is $\displaystyle a^{20}=1$...

View attachment 1800

Merry Christmas from Serbia

$\chi$ $\sigma$

Thank you chisigma for participating! Your answer is correct! :)

I like Serena said:
12daysopt02.jpg


On the first day of Christmas
my true love sent to me:
A Partridge in a Pear Tree

On the second day of Christmas
my true love sent to me:
2 Turtle Doves
and a Partridge in a Pear Tree

On the third day of Christmas
my true love sent to me:
3 French Hens
2 Turtle Doves
and a Partridge in a Pear Tree

On the fourth day of Christmas
my true love sent to me:
4 Calling Birds
3 French Hens
2 Turtle Doves
and a Partridge in a Pear Tree

On the fifth day of Christmas
my true love sent to me:
5 Golden Rings
4 Calling Birds
3 French Hens
2 Turtle Doves
and a Partridge in a Pear Tree

On the sixth day of Christmas
my true love sent to me:
6 Geese a Laying
5 Golden Rings
4 Calling Birds
3 French Hens
2 Turtle Doves
and a Partridge in a Pear Tree


Expand to $a^4+a^3+a^2+a+1=0$.
Multiply by $(a-1)$ to give $a^5-1=0$.
So $a^5 = 1$ and therefore $a^{20}=1$ (with $a$ neither rational nor real).
Substitute to find:
$$(1+\frac 1 1 + 1)(1 + \frac 1 1) = 6$$

It's 6 Geese a Laying!


Merry Chrismas! (Clapping) (Inlove)


Hey I like Serena, thanks for the greetings and participating in my challenge problem and the way you solved the problem has opened my eyes to know other method to tackle problem such as this!

My solution:

I noticed

$a^2+\dfrac{1}{a^2} =a^8+\dfrac{1}{a^8}=1-\left( a+\dfrac{1}{a} \right)$,$a^4+\dfrac{1}{a^4}=a^{16}+\dfrac{1}{a^{16}}=\left( a+\dfrac{1}{a} \right)$, $a^{12}+\dfrac{1}{a^{12}}=-1-\left( a+\dfrac{1}{a} \right)$

$\therefore \left( a^4+\dfrac{1}{a^4} \right) \left( a^{16}+\dfrac{1}{a^{16}}\right)=1-\left( a+\dfrac{1}{a} \right)$

and this gives

$a^{20}+\dfrac{1}{a^{20}}+a^{12}+\dfrac{1}{a^{12}}=1-\left( a+\dfrac{1}{a} \right)$

$a^{20}+\dfrac{1}{a^{20}}-1-\left( a+\dfrac{1}{a} \right)=1-\left( a+\dfrac{1}{a} \right)$

$a^{20}+\dfrac{1}{a^{20}}=2$

therefore $\left( a^{20}+\dfrac{1}{a^{20}}+1 \right) \left( a^{20}+\dfrac{1}{a^{20}} \right)=(2+1)(2)=6$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 60 ·
3
Replies
60
Views
12K
  • · Replies 61 ·
3
Replies
61
Views
11K
  • · Replies 93 ·
4
Replies
93
Views
15K
  • · Replies 114 ·
4
Replies
114
Views
11K
  • · Replies 86 ·
3
Replies
86
Views
13K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
11K