To prove the given inequality, we prove its equivalent (obtained by the dividing both sides of the original inequality by the LHS), ##1 ≥ \prod_{k=1}^n {\frac {x_k} {(x_k+y_k)}}^{1/n} + \prod_{k=1}^n {\frac {y_k} {(x_k+y_k)}}^{1/n}##. Since ##x_k, y_k## are positive numbers, we have ##0 \lt \frac {x_k} {(x_k+y_k)} \lt 1## and ##0 \lt \frac {y_k} {(x_k+y_k)} \lt 1##. So if we define ##A_k \equiv \frac {x_k} {(x_k+y_k)}##, we simply need to prove that ##\prod_{k=1}^n {A_k}^{1/n} + \prod_{k=1}^n {(1-A_k)}^{1/n} \le 1##
For positive integer ##n## and when ##A_1, A_2,\ldots,A_n## are all positive numbers in the range ##(0,1)##, we prove by induction that ##Y_n = \prod_{k=1}^n {A_k}^{1/n} + \prod_{k=1}^n {(1 - A_k)}^{1/n} \le 1##.
(Eq. 1)
The base case is ##n=1## for which the equation reduces to ##A_1 + (1-A_1) = 1## and hence the condition is true. We assume that that the condition holds true for values of ##n## up to ##N## for some positive integer ##N##, i.e. ##Y_n \le 1 \ \forall n \in \{1, .., N-1\}## where ##N \ge 2##.
For ##n = N##, we have ##Y_n = Y_N = \prod_{k=1}^N {A_k}^{1/N} + \prod_{k=1}^N {(1 - A_k)}^{1/N} = \\
A_N \prod_{k=1}^{N-1} {A_k}^{1/N} + (1-A_N)\prod_{k=1}^{N-1} (1-A_k)^{1/N}##
(Eq. 2)
For positive integer ##n## greater than 1, we prove the following identity: ##ax^{1/n} + b(1-x)^{1/n} \le (a^{n/(n-1)}+b^{n/(n-1)})^{(n-1)/n}## for any positive numbers ##a, b##, and ##0 \lt x \lt 1##.
Let ##y = ax^{1/n} + b(1-x)^{1/n}##. To find the maximum possible value of ##y## for a fixed ##a, b##, we find the value of ##x## for which ##y' = \frac {dy} {dx} = 0##. Solving this equation, we get ##\frac {a} {n} x^{1/n - 1} - \frac {b} {n} (1-x)^{1/n - 1} = 0 \Rightarrow \frac {1} {x} - 1 = (\frac {a} {b})^{\frac {n} {1-n}} \Rightarrow x = \frac {a^{\frac {n} {n-1}}} {a^{\frac {n} {n-1}} + b^{\frac {n} {n-1}}}##. Substituting this value of ##x## in the original equation for ##y##, we get ##y_{max} = (a^{\frac {n} {n-1}} + b^{\frac {n} {n-1}})^{\frac {n-1} {n}} \Rightarrow y \le (a^{n/(n-1)}+b^{n/(n-1)})^{(n-1)/n}##
(Eq. 3)
Going back to (Eq. 2), we note that ##Y_N## is of the form ##ax^{1/n} + b(1-x)^{1/n}## (with ##A_N## corresponding to ##x##) for which we proved an identity (Eq. 3). Applying that identity, we get ##Y_N \le ((\prod_{k=1}^{N-1} {A_k}^{1/N})^{N / (N-1)} + (\prod_{k=1}^{N-1} {(1-A_k)}^{1/N})^{N / (N-1)})^{(N-1)/N} = \\
((\prod_{k=1}^{N-1} {A_k}^{1/(N-1)}) + (\prod_{k=1}^{N-1} {(1-A_k)}^{1/(N-1)}))^{(N-1)/N} \\
\Rightarrow Y_N \le {Y_{N-1}}^{(N-1)/N}##
Since by the inductive assumption ##Y_{N-1} \le 1##, we get ##{Y_{N-1}}^{(N-1)/N} \le 1 \Rightarrow Y_N \le 1##
Hence proved.