sandy.bridge
- 797
- 1
Homework Statement
Hello all,
New to partial derivatives. I was wondering if someone could look over my work and determine if my final step is as far as I can take the proble (ie. that will be my solution). Thanks in advance.
Let the temperature of a 2D domain in polar coordinates (r, \varphi) be given by T=f(r, \varphi, t), where t is time. Suppose a probe follows the straight path, given in Cartesian coordinates by x=X(t), y=Y_0=constant. Using the fact that r^2=x^2+y^2, \varphi=arctan(y/x), find dT/dt.
The Attempt at a Solution
\frac{dr}{dt}=\frac{\delta r}{\delta x}\frac{dx}{dt}+\frac{\delta r}{\delta y}\frac{dy}{dt}=\frac{\delta r}{\delta x}\frac{dx}{dt}
and
\frac{d\varphi}{dt}=\frac{\delta \varphi}{\delta x}\frac{dx}{dt}+\frac{\delta\varphi}{\delta y}\frac{dy}{dt}=\frac{\delta\varphi}{\delta x}\frac{dx}{dt}
thus,
\frac{dT}{dt}=\frac{\delta T}{\delta r}\frac{dr}{dt}+\frac{\delta T}{\delta\varphi}\frac{d\varphi}{dt}+\frac{\delta T}{\delta t}
Next, we have,
\frac{dT}{dt}=\frac{\delta T}{\delta r}\frac{\delta r}{\delta x}\frac{dx}{dt}+\frac{\delta T}{\delta\varphi}\frac{\delta\varphi}{\delta x}\frac{dx}{dt}+\frac{\delta T}{\delta t}
=\frac{\delta T}{\delta r}(x)\frac{d[X(t)]}{dt}-\frac{\delta T}{\delta\varphi}\frac{1}{1+(y/x)^2}\frac{y}{x^2}\frac{d[X(t)]}{dt}+\frac{\delta T}{\delta t}
Is this as far as I can take it with the information given?