That is not correct.
Even in classical mechanics, there is no such thing as a force measured locally being translated to some other position - the concept has no meaning. In your problem, there is a force on the molecules at the top of the pole from the weight of the man; by Newton's third law these molecules exert an equal and opposite upwards force on the man and that's what holds him up. These molecules in turn exert a completely separate force on the molecules below them, and by Newton's third law the lower molecules exert an upwards force on the upper ones... and so on all the way down to the bottom of the pole, where the bottommost molecules exert a force on the spring scale.
Now, you have made the starting assumption that nothing is moving (the man is help up, the pole isn't bending or being crushed under the weight, ...). That can only happen if the net force on any part of the pole is zero, meaning that the downwards force on it from above is equal to the upwards force on it from below. Work that down every step of the way and you will see that the upwards force from the scale on the bottommost molecules of the pole has to be equal to the downwards force from the man on the topmost molecules of the pole. But that equality has nothing to do with the force being translated from one radius to another - they're completely different forces, and they just turn out to have the same strength because you set the problem up so that they would.