What is the pressure in a microscopic scale?

  • Thread starter Thread starter omar.abosamra
  • Start date Start date
  • Tags Tags
    Pressure Scale
AI Thread Summary
The discussion centers on the application of the Bernoulli equation in fluid mechanics and its implications at a microscopic level. It highlights that while the equation describes pressure, density, and velocity in a fluid, it does not account for molecular interactions. The conversation raises questions about pressure due to viscosity and how different layers of fluid might interact, suggesting that pressure may not hold significance at the molecular scale. Ultimately, fluid mechanics operates on a continuum, treating fluids as divisible entities rather than focusing on individual molecules. The conclusion is that pressure loses its meaning when examined at a molecular or smaller scale.
omar.abosamra
Messages
7
Reaction score
0
i have took a basic course in fluid mechanics:
Bernoulli equation states that:
P + (1/2)*ρ*v^2 + ρ*g*h = constant
where P is the pressure , ρ is the density , g is the garvitational acceleration and h is the distance from the center of the Earth , and that constant is our reference.

that means if their was a tube carrying a stream of fluid with velocity V , the pressure on the wall of the tube would be:
(1/2)*ρ*v^2 + ρ*g*h + constant

what does that mean in a microscopic scale ? what happen with the interaction of the molecules of the wall and the fluid ?

and can their exist pressure inside the fluid due to the viscosity of the fluid ? if we assume that every layer moves with a speed different that the next layer due to viscosity? and if so , how would the pressure affect the stream ?
 
Physics news on Phys.org
The 'fluid particles' ( also called fluid elements) considered in fluid mechanics are not the molecules of the fluid.

In fact fluid mechanics does not consider molecules at all. The particles just have to be small enough for the analysis concerned. The fluid is taken as continuously divisible down to whatever scale is required.

Pressure has no meaning at a molecular (or smaller) scale.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?

Similar threads

Replies
9
Views
6K
Replies
1
Views
2K
Replies
2
Views
1K
Replies
24
Views
2K
Replies
3
Views
2K
Back
Top