What is the Proof for the Floor Function Challenge II Involving Primes?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Function
Click For Summary
SUMMARY

The forum discussion centers on proving the equation involving the floor function for two distinct primes, \( a \) and \( b \): \(\displaystyle\left\lfloor\dfrac{a}{b} \right\rfloor+\left\lfloor\dfrac{2a}{b} \right\rfloor+\left\lfloor\dfrac{3a}{b} \right\rfloor+\cdots+\left\lfloor\dfrac{(b-1)a}{b} \right\rfloor=\dfrac{(a-1)(b-1)}{2}\). The proof was praised for its clarity and effectiveness, particularly highlighting the contributions of a user named Euge. Another participant expressed intent to share an alternative solution in the future, indicating ongoing engagement with the problem.

PREREQUISITES
  • Understanding of prime numbers and their properties
  • Familiarity with the floor function in mathematics
  • Basic knowledge of mathematical proofs and problem-solving techniques
  • Experience with number theory concepts
NEXT STEPS
  • Explore advanced properties of the floor function in number theory
  • Research alternative proofs for the floor function involving primes
  • Study the implications of the equation in combinatorial number theory
  • Investigate related topics such as quadratic reciprocity and its applications
USEFUL FOR

Mathematicians, number theorists, and students interested in advanced mathematical proofs and properties of prime numbers will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a$ and $b$ be two different primes. Prove that
$\displaystyle\left\lfloor\dfrac{a}{b} \right\rfloor+\left\lfloor\dfrac{2a}{b} \right\rfloor+\left\lfloor\dfrac{3a}{b} \right\rfloor+\cdots+\left\lfloor\dfrac{(b-1)a}{b} \right\rfloor=\dfrac{(a-1)(b-1)}{2}$.
 
Mathematics news on Phys.org
For every $k \in \{1,2,\ldots,b-1\}$, $ka$ is not divisible by $b$ (or else $b$ divides $k$, which cannot happen). So for fixed $k$,

$\displaystyle \frac{ka}{b} - 1 < \left\lfloor\frac{ka}{b}\right\rfloor < \frac{ka}{b}$,

$\displaystyle \frac{(b-k)a}{b} - 1 < \left\lfloor\frac{(b-k)a}{b}\right\rfloor < \frac{(b-k)a}{b}$.

Adding the two inequalities, we get

$\displaystyle a - 2 < \left\lfloor\frac{ka}{b}\right\rfloor + \left\lfloor\frac{(b-k)a}{b}\right\rfloor < a$.

This forces

$\displaystyle \left\lfloor\frac{ka}{b}\right\rfloor + \left\lfloor\frac{(b-k)a}{b}\right\rfloor = a - 1$

Therefore

$\displaystyle \left\lfloor\frac{a}{b}\right\rfloor + \left\lfloor\frac{2a}{b}\right\rfloor + \cdots + \left\lfloor\frac{(b-1)a}{b}\right\rfloor$

$\displaystyle = \dfrac{\left\lfloor\frac{a}{b}\right\rfloor + \left\lfloor\frac{(b-1)a}{b}\right\rfloor}{2} + \dfrac{\left\lfloor\frac{2a}{b}\right\rfloor + \left\lfloor\frac{(b-2)a}{b}\right\rfloor}{2} + \cdots + \dfrac{\left\lfloor\frac{(b-1)a}{b}\right\rfloor + \left\lfloor\frac{a}{b}\right\rfloor}{2}$

$\displaystyle = \frac{a-1}{2} + \frac{a-1}{2} + \cdots + \frac{a-1}{2} (b-1\; \text{times})$

$\displaystyle = \frac{(a-1)(b-1)}{2}$.
 
Euge said:
For every $k \in \{1,2,\ldots,b-1\}$, $ka$ is not divisible by $b$ (or else $b$ divides $k$, which cannot happen). So for fixed $k$,

$\displaystyle \frac{ka}{b} - 1 < \left\lfloor\frac{ka}{b}\right\rfloor < \frac{ka}{b}$,

$\displaystyle \frac{(b-k)a}{b} - 1 < \left\lfloor\frac{(b-k)a}{b}\right\rfloor < \frac{(b-k)a}{b}$.

Adding the two inequalities, we get

$\displaystyle a - 2 < \left\lfloor\frac{ka}{b}\right\rfloor + \left\lfloor\frac{(b-k)a}{b}\right\rfloor < a$.

This forces

$\displaystyle \left\lfloor\frac{ka}{b}\right\rfloor + \left\lfloor\frac{(b-k)a}{b}\right\rfloor = a - 1$

Therefore

$\displaystyle \left\lfloor\frac{a}{b}\right\rfloor + \left\lfloor\frac{2a}{b}\right\rfloor + \cdots + \left\lfloor\frac{(b-1)a}{b}\right\rfloor$

$\displaystyle = \dfrac{\left\lfloor\frac{a}{b}\right\rfloor + \left\lfloor\frac{(b-1)a}{b}\right\rfloor}{2} + \dfrac{\left\lfloor\frac{2a}{b}\right\rfloor + \left\lfloor\frac{(b-2)a}{b}\right\rfloor}{2} + \cdots + \dfrac{\left\lfloor\frac{(b-1)a}{b}\right\rfloor + \left\lfloor\frac{a}{b}\right\rfloor}{2}$

$\displaystyle = \frac{a-1}{2} + \frac{a-1}{2} + \cdots + \frac{a-1}{2} (b-1\; \text{times})$

$\displaystyle = \frac{(a-1)(b-1)}{2}$.

Wow...what terrific solution, so impressively laid out...well done, Euge! And thanks for participating.:)

I have at hand a solution that tackles the problem entirely differently and I would post it days later, in case there are more members want to play with this problem.
 
Solution of other:

The statement involves two independent variables, $a$ and $b$ and $\dfrac{a}{b},\,\dfrac{2a}{b},\,\dfrac{3a}{b},\cdots,$ respectively. We might want to approach it using geometry approach.

Consider the case $a=5$ and $b=7$. The points $(k,\,\dfrac{5k}{7})$ where $k=1,\,2,\,\cdots,\,6$ each lie on the line $y=\dfrac{5k}{7}$ and $\displaystyle \sum_{k=1}^6\left\lfloor\dfrac{5k}{7} \right\rfloor$ equals the number of lattice points interior to the triangle with vertices $(0,\,0)$, $(7,\,0)$ and $(7,\,5)$. By symmetry, this number is one-half the number of lattice points in the rectangle with vertices $(0,\,0)$, $(0,\,5)$, $(7,\,0)$ and $(7,\,5)$. There are $4\times 6=24$ lattice points in that rectangle, which means the triangle with vertices $(0,\,0)$, $(7,\,0)$ and $(7,\,5)$ contains 12 interior lattice points.

The same goes through in the general case. The condition that $a$ and $b$ have no common factor assures us that none of the lattice points in the interior of the rectangle will fall on the line $y=\dfrac{ax}{b}$. Thus,

$\displaystyle \sum_{k=1}^{b-1}\left\lfloor\dfrac{ka}{b} \right\rfloor=\dfrac{\text{total number of lattice poins in the interior of the rectangle}}{2}=\frac{(a-1)(b-1)}{2}$.
 
Interestingly done anemone. Reminds me of a post I made long ago in http://mathhelpboards.com/number-theory-27/quadratic-reciprocity-9722.html at the number theory forum.
 

Similar threads

Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
Replies
2
Views
2K