What Is the Radial Schrödinger Equation for Hydrogen with Maximum l Value?

tuomas22
Messages
20
Reaction score
0
Sorry in advance my english, I tried to translate it to english as good as I can

Homework Statement



When l has its maximum value, the hydrogen atom radial equation has a simple form of

R(r) = Arn-1e-r/na0, where a0 is Bohr's radius.

Write the respective radial schrödinger equation.

Homework Equations



Radial Schrödinger Equation:
-\frac{\hbar^2}{2*\mu*r^2}*\frac{d}{dr}(r^2*\frac{dR(r)}{dr})+\left[-\frac{kZe^2}{r}+\frac{\hbar^2*l(l+1)}{2*\mu*r^2}\right]*R(r) = ER(r)

The Attempt at a Solution



I've attempted substituting the given R(r) to the radial equation, but I can't get anything out of it that makes sense. Too long to write it here with this hard latex thing :S

Should I get some nice reduced form or can I expect some equation monster?
 
Physics news on Phys.org
tuomas22 said:
Sorry in advance my english, I tried to translate it to english as good as I can

Your translation is very good!:smile:

When l has its maximum value...

This is the key assumption in the problem statement...What is the maximum value of l for any given value of n (remember, only certain values are allowed)?...Substitute that into your radial Schroedinger equation (along with the given function R(r)).
Radial Schrödinger Equation:
-\frac{\hbar^2}{2*\mu*r^2}*\frac{d}{dr}(r^2*\frac{dR(r)}{dr})+\left[-\frac{kZe^2}{r}+\frac{\hbar^2*l(l+1)}{2*\mu*r^2}\right]*R(r) = ER(r)
 
Thanks for answer!
The maximum value of l is n-1 right?
I tried to substitute it but it doesn't get much prettier :)

I'm doing the math with Maple here, and it freaks me out to even think that I should be able to do it without computer, which is the case actually...That's why I think I'm doing something wrong, maybe I understand the equation wrong or something.

Here's a screenshot of my maple session (left side of the equation)
http://img526.imageshack.us/img526/5863/tryw.jpg

If I count the right side in too, I can reduce the Arn-1e-r/na0 term from both sides but still I'm not so sure about it
 
Last edited by a moderator:
You also have an equation for Bohr's radius a_0 right?...And Z=____ for the Hydrogen atom?

When you substitute these things in, you should get a lot of terms canceling each-other out.
 
aaah the bohr radius equation, didnt even think about it :)
(and Z=1 ofcourse)

the next part of the question was to prove that the given R(r) is the solution to the schrödinger equation with l=0, and I got it right now with that bohr radius tip you gave! :)
- \frac{1}{2} \frac{k^{2}e^{4}\mu}{\hbar ^{2}} = E

But with l=n-1 I still get horrible monster equations...*cry* nothing seems to cancel out

there must be something I'm doing wrong since I can't be expected to do that kind of differentations without computer in a 2 hour exam ! No human could do it right! :D
(this is an old exam question)
 
Last edited:
Aaah I got it!
0 = 0 finally :)
There was some silly mistake in the equation.

The derivation is still inhumane to do with pen and paper though :)

Thanks much gabbagabbahey!
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Back
Top