MHB What is the remainder when 1992 is divided by 92 using the CRT?

  • Thread starter Thread starter Suvadip
  • Start date Start date
  • Tags Tags
    Remainder
Suvadip
Messages
68
Reaction score
0
Find the remainder when 1992 is divided by 92
 
Mathematics news on Phys.org
One way is to find remaindes of $19^2$, $19^{2^2}$, $19^{2^3}$ and so on. For example, $19^2=361\equiv-7\pmod{92}$, $19^4\equiv(-7)^2=49\pmod{92}$, etc. Then write 92 in binary: $92=2^6+2^4+2^3+2^2$. So, you need to compute the remainder of $19^{2^6}\cdot19^{2^4}\cdot19^{2^3}\cdot19^{2^2}$. That is, use two tricks: take the remainder after each multiplication and use smart exponentiation by taking consecutive squares instead of multiplying 19 by itself 92 times.

Another way is to use Euler's theorem: $19^{\varphi(92)}\equiv1\pmod{92}$. Here $\varphi(92)=92\left(1-\frac{1}{2}\right)\left(1-\frac{1}{23}\right)=44$. So, $19^{88}\equiv1\pmod{92}$ and you only need to compute $19^4\pmod{92}$.
 
Continuing Evgeny's comment, note that:

[math]19^2 \equiv 361 \equiv 85 \equiv -7\ (\text{mod }92)[/math]

(I have a profound dislike of "big numbers").

It follows that:

[math]19^{92} \equiv 19^4 \equiv (19^2)^2 \equiv 49\ (\text{mod }92)[/math].

EDIT: I must learn to read someday, this was implicit in the first post. I'll go crawl under a rock now...
 
Alternatively, the Chinese Remainder Theorem (CRT) says we can split up $92$ into $2^2 \cdot 23$.

If you're not learning about the CRT you might as well stop reading now, since my explanation is rather concise. Sorry.
Since I rather like CRT, I'll continue.

More specifically, CRT says that $19^{92} \pmod{92}$ can be (isomorphically) mapped to:
$$(19^{92} \text{ mod }4,\ 19^{92} \text{ mod } 23) \equiv ((-1)^{92} \text{ mod } 4,\ (-4)^{92 \text{ mod } 22} \text{ mod } 23) \equiv (1 \text{ mod } 4, 3 \text{ mod } 23)$$

The solutions from the 2nd argument are one of $3, 26, 49, 72$.
Only $49$ fits the first argument.

Therefore $19^{92} \equiv 49 \pmod{92}$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top