What Is the Smallest N That Cannot Be Eliminated Using Modular Arithmetic?

  • Thread starter Thread starter PhysicForumz
  • Start date Start date
  • Tags Tags
    Interesting Puzzle
PhysicForumz
Messages
1
Reaction score
0
A natural integer N can be written as x mod p, for instance:

N... 1 2 3 4 5 6 7 8 9 10 11 12

p=2 1 2 1 2 1 2 1 2 1 2 1 2

p=3 1 2 3 1 2 3 1 2 3 1 2 3

p=5 1 2 3 4 5 1 2 3 4 5 1 2

p=7 1 2 3 4 5 6 7 1 2 3 4 5

Etc.

The puzzle is quite difficult to state in this format but I'll have a go:

You choose any value x from each row of mod p (up to the maximum value of p, in the above case 7) and eliminate them. You have to find the minumum number N where it is impossible to eliminate all values of N.

Examples:

For p=2, the minimum N is 2. This is because eliminating any value of x (1 or 2), you will always have one remaining.

N... 1 2 3 4 5 6 7 8 9 10 11 12

p=2 1 2For p=3.

N... 1 2 3 4 5 6 7 8 9 10 11 12

p=2 1 2 1

p=3 1 2 3

Having a minimum of N=3 would not work: if you chose x=1 in the p=2 row, you'd eliminate N=1 and N=3. Then you eliminate x=2 in the p=3 row and you eliminate them all.

N... 1 2 3 4 5 6 7 8 9 10 11 12

p=2 1 2 1 2

p=3 1 2 3 1

Having a minimum of N=4 would work however. There is no combination of x you could use to eliminate all values of N. For instance, with x=1 in the p=2 row, you'd eliminate N=1 and N=3. Then whether you choose x=2 or x=1 on the p=3 row, you'd have one left. I.e N=4

For p=5.

N... 1 2 3 4 5 6 7 8 9 10 11 12

p=2 1 2 1 2 1 2

p=3 1 2 3 1 2 3

p=5 1 2 3 4 5 1

I'll leave this to you, but you could try N=6. Try some combinations of x on each row. Is it possible to eliminate every value of N with N=6? (Answer is no :p)

The question is: how do you generalise this up to any p? E.g. how would you find out the minimum N needed when p = 41? What about when p = 211? Etc.

I've had a go, but it gets very tricky after a while trying to eliminate every value of N and finding all the combinations of x to use! I've started to make a program to do this for higher values of p!

Tell me if you need any clarifications / I haven't explained the problem properly
 
Mathematics news on Phys.org
To rephrase the question, you're asking what is the largest N such that
\{1,...,N-1\} \subseteq \bigcup_{j=1}^k(r_j+p_j\mathbb{Z}) for some values r_j and where p_j is the jth prime number?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top