MHB What is the solution (rational function/interval table)?

  • Thread starter Thread starter eleventhxhour
  • Start date Start date
  • Tags Tags
    Table
eleventhxhour
Messages
73
Reaction score
0
What is the solution of |x/(x-2)| < 5 ?

So, I did this the usual way of moving over the 5 to the left side and then cross multiplying and simplifying etc. However, I keep getting the wrong answer. I got x < 5/3 and x > 2, while the answer in the book says that it's x< 5/3 and x > 5/2.

What did I do wrong? I'm assuming it has something to do with the absolute value sign, but I'm not sure how to figure it out...
 
Mathematics news on Phys.org
What do yo mean with cross multiplying? I'm not familiar with this.

I would solve it this way: to get rid of the absolut value signs you can square both sides, that is

$$\left | \frac{x}{x-2}\right | < 5 \Rightarrow \frac{x^2}{(x-2)^2} < 25$$
Solving this inequality gives the desired result.
 
Another way to get rid of the absolute value:
[math]\left | \frac{x}{x - 2} \right | < 5[/math]

splits into the two inequalities:
[math]\frac{x}{x - 2} < 5[/math]

and
[math]-\frac{x}{x - 2} < 5[/math]

and solve them separately.

The trouble with cross multiplying when using inequalities is that we need to know the sign of what we are multiplying by. For example -4/x < 1 when x is positive, but -4/x > 1 when x is negative. The same thing will occur for the x - 2 term.

-Dan
 
topsquark said:
Another way to get rid of the absolute value:
[math]\left | \frac{x}{x - 2} \right | < 5[/math]

splits into the two inequalities:
[math]\frac{x}{x - 2} < 5[/math]

and
[math]-\frac{x}{x - 2} < 5[/math]

and solve them separately.

The trouble with cross multiplying when using inequalities is that we need to know the sign of what we are multiplying by. For example -4/x < 1 when x is positive, but -4/x > 1 when x is negative. The same thing will occur for the x - 2 term.

-Dan

So I solved each of those and for the first one I got that it's negative at x<2 and x>5/2. For the second I got that it's negative at x<5/3 and x>2. Is this correct? The book had a different answer (x<5/3 and x>5/2).
 
eleventhxhour said:
So I solved each of those and for the first one I got that it's negative at x<2 and x>5/2. For the second I got that it's negative at x<5/3 and x>2. Is this correct? The book had a different answer (x<5/3 and x>5/2).
All of this has to come together. Take a look first at the lower limits of x. We have x < 2 and x < 5/3. In order for both of these to be true then we require that x < 5/3, because 5/3 is smaller than 2...both conditions are satisfied by this. See if you can do the upper limits of x based on a similar argument.

-Dan
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
51
Views
3K
Replies
10
Views
2K
Replies
1
Views
3K
Replies
3
Views
1K
Back
Top