What is the Stirling transform of (k-1)?

Cristopher
Messages
9
Reaction score
0
While reading about combinatorial mathematics, I came across the Stirling transform. https://en.wikipedia.org/wiki/Stirling_transform

So then, if I want to find the Stirling transform of, for instance, ##(k-1)!##, I have to compute this (using the explicit formula of the Stirling number of the second kind):

##\displaystyle\sum_{k=1}^{n}\left(\frac{1}{k!}\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}j^n(k-1)!\right)##

This looks complicated and I don't know where to start. Mathematica gives the result ##(-1)^n\operatorname{Li}_{1-n}(2)##.

Any insights or hints of how to arrive at that result will be appreciated
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top