What is the sum to infinity of geometric progressions?

  • Thread starter Thread starter antevante
  • Start date Start date
  • Tags Tags
    Sum
antevante
Messages
8
Reaction score
0
Hi!
In a geometric progression you can find the sum to infinety is some series, for example 4,2,1,... where the common factor is 1/2. The sum to infinety will then be, 8, it says in my book, but I can only think of it as very, very close to 8, not eight exactly. How is it? Is the sum to infinety 8 or just very close to eight?
/Andreas
 
Mathematics news on Phys.org
Sum of a GP = a(1-r^n)/(1-r) where a is the first number in the sequence, r is the common ratio and n is the term number.

When -1<r<1 and n approaches infinity r^n approaches 0. Therefore Sum to infinity = a/(1-r)

Therefore Sum to infinity = 4/(1-0.5) = 8
 
The sum *is* eight. It is the limit of the finite subsums. If it weren't eight but were less than 8, then yo'ud have a problem since one of the (increasing) finite subsums would be greater than your preferred infinite sum. It is a property of the real number system that the sum is 8. It is, by definition, 8 there is no contention about that, if you think it is something different then you don't understand what the words mean.
 
If you were to stop somewhere short of "infinity", say summing up to n= 10000000, then the answer, one of the "subsums" that matt grime referred to (I would say "partial sum") would be slightly less than 8. Summing all terms, that is, never stopping, will give exactly 8.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top