What is x in Trig Problem with given constraints?

  • Context: MHB 
  • Thread starter Thread starter Greg
  • Start date Start date
  • Tags Tags
    Trigonometry
Click For Summary

Discussion Overview

The discussion revolves around finding the value of $$x$$ such that $$\tan x=1+\sqrt{2}$$ within the interval $$0

Discussion Character

  • Homework-related

Main Points Raised

  • Multiple participants present the same problem statement regarding the equation $$\tan x=1+\sqrt{2}$$.

Areas of Agreement / Disagreement

There is no indication of disagreement or differing views, as all posts reiterate the same problem without providing distinct solutions or approaches.

Contextual Notes

None.

Who May Find This Useful

Individuals interested in solving trigonometric equations or those studying properties of the tangent function within specific intervals.

Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Find $$x$$ such that $$\tan x=1+\sqrt2$$ and $$0<x<\dfrac{\pi}{2}$$.
 
Mathematics news on Phys.org
Since $1 + \tan x = 2 + \sqrt{2}$ and $1 - \tan x = -\sqrt{2}$, then

$$\tan\left(\frac{\pi}{4}-x\right) = \frac{1 - \tan x}{1 + \tan x} = \frac{-\sqrt{2}}{2 + \sqrt{2}} = -\frac{1}{\sqrt{2}+1}= -\frac{1}{\tan x}.$$

Therefore,

$$1 + \tan x\, \tan\left(\frac{\pi}{4}-x\right) = 0,$$

which implies

$$\frac{1 + \tan x\tan\left(\frac{\pi}{4}-x\right)}{\tan x - \tan\left(\frac{\pi}{4}-x\right)} = 0,$$

or,

$$\cot\left(x + \left(\frac{\pi}{4}-x\right)\right) = 0,$$

that is,

$$\cot\left(2x - \frac{\pi}{4}\right) = 0.$$

One of the solutions to this equation is such that $2x - \frac{\pi}{4} = \frac{\pi}{2}$, or $x = \frac{3\pi}{8}$. So all solutions are of the form $\frac{3\pi}{8} + n\pi$, where $n$ ranges over the integers. Since we seek those solutions in $(0, \frac{\pi}{2})$, the only root of the original equation is $x = \frac{3\pi}{8}$.
 
$tan x = 1+ \sqrt2$
we need to get rid of $\sqrt2$
so $\tan x -1 = \sqrt 2$
or $\tan^2 x-2\tan x + 1 = 2$
or $\tan ^2 x -1 = 2\tan x$
or $\tan 2x = -\dfrac{2\tan x}{\tan^2x -1} = -1 = \tan (n\pi + \dfrac{3\pi}{4})$
$x = \dfrac{1}{2} (n\pi + \dfrac{3\pi}{4})$
so x in range is $\frac{3\pi}{8}$
 
Last edited:
greg1313 said:
Find $$x$$ such that $$\tan x=1+\sqrt2$$ and $$0<x<\dfrac{\pi}{2}$$.

My solution:

$\tan x=1+\sqrt2$

$\sin x=\cos x+\sqrt2 \cos x$

$\sin x-\cos x=\sqrt2 \cos x$

$\sqrt2(\sin (x-45^\circ))=\sqrt2 \sin(90^\circ- x)$

$\therefore 2x=135^\circ\,\,\,\rightarrow\,\,\,x=67.5^\circ$ for $$0<x<90^\circ$$.
 
greg1313 said:
Find $$x$$ such that $$\tan x=1+\sqrt2$$ and $$0<x<\dfrac{\pi}{2}$$.

Construct right-angled triangle $$ABC$$ such that $$\angle{ABC}=90^\circ,\overline{AB}=1,\overline{BC}=1+\sqrt2$$. Construct point $$D$$ on $$\overline{BC}$$ such that $$\overline{BD}=1$$.
Then $$\angle{CAD}=22.5^\circ,\angle{BAD}=45^\circ,\angle{BAC}=\angle{CAD}+\angle{BAD}=67.5^\circ$$ or $$\dfrac{3\pi}{8}$$ radians.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K