Albert1
- 1,221
- 0
$A=52x1y3$ is a 6 digits number
if $A$ mod 11=4
find $(x+y)$ mod 11=?
if $A$ mod 11=4
find $(x+y)$ mod 11=?
The discussion revolves around the mathematical expression where \( A = 52x1y3 \) is a six-digit number and \( A \mod 11 = 4 \). Participants aim to determine the value of \( (x+y) \mod 11 \). The problem requires understanding modular arithmetic and the properties of congruences to solve for \( x \) and \( y \) based on the given conditions.
PREREQUISITESMathematicians, students studying number theory, and anyone interested in solving modular equations will benefit from this discussion.
Hello.Albert said:$A=52x1y3$ is a 6 digits number
if $A$ mod 11=4
find $(x+y)$ mod 11=?
Albert said:$A=52x1y3$ is a 6 digits number
if $A$ mod 11=4
find $(x+y)$ mod 11=?