What Physical Meaning Underlies the Non-Divergence of the Einstein Tensor?

  • Thread starter Thread starter snoopies622
  • Start date Start date
  • Tags Tags
    Einstein Tensor
snoopies622
Messages
852
Reaction score
29
What physical meaning can be ascribed to the non-divergence of the Einstein tensor? I find it counterintuitive since I associate divergence with field sources (like the electrical field of a proton) and obviously a gravitational field has a source. Is there a parallel with Newton's formulation of gravity that might be instructive?
 
Last edited:
Physics news on Phys.org
snoopies622 said:
What physical meaning can be ascribed to the non-divergence of the Einstein tensor? I find it counterintuitive since I associate divergence with field sources (like the electrical field of a proton) and obviously a gravitational field has a source. Is there a parallel with Newton's formulation of gravity that might be instructive?
Since the Einstein tensor is proportional to the stress-energy-momentum tensor, T it means that energy and momentum is conserved since div T = 0. This holds true even when the cosmological constant is non-zero.

Pete
 
snoopies622 said:
What physical meaning can be ascribed to the non-divergence of the Einstein tensor? I find it counterintuitive since I associate divergence with field sources (like the electrical field of a proton) and obviously a gravitational field has a source. Is there a parallel with Newton's formulation of gravity that might be instructive?

You can also see them as constraints on the equations of motion. Intuïtively you can understand them as follows: in general relativity one wants to solve for the metric tensor, which is symmetric and thus can have 10 independent entries ( n*(n+1)/2 ). However, one is free to choose the coordinates, and this gives some freedom in your equations ( which can be seen as a gauge-freedom ). The consequences of this can be calculated to be the Bianchi-identities, which give that the Einstein tensor is divergence-free. Note that this is an identity rather than a symmetry; the description of physics doesn't depend on your coordinates.

A parallel with Newton's formulation is a little tricky; but you have to be aware of the fact that the Einstein tensor already contains second order derivatives of the metric, just like Poisson's equation is a second order differential equation of the classical gravitational field ! A sensible parallel would appear to me that due to constraints on the gravitational field the third order divergence of the classical gravitational field would be zero.
 
So Einstein created the stress-energy tensor first, then made G_{ab} to match it?
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top