What point does the spiral converge to?

  • Context: MHB 
  • Thread starter Thread starter amr21
  • Start date Start date
  • Tags Tags
    Convergence Spiral
Click For Summary

Discussion Overview

The discussion revolves around the convergence point of a spiral defined by a specific sequence of movements starting from the origin. Participants explore the mathematical representation of the X coordinate of the spiral and its relation to power series, particularly that of the cosine function.

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • One participant describes a spiral movement pattern and seeks to determine the convergence point, suggesting it lies between n/2 and 7n/12 after several moves.
  • Another participant analyzes the X coordinate of the spiral, proposing a series that resembles the power series of the cosine function.
  • A later reply suggests matching terms from the series to find a corresponding value of x, concluding that the spiral ends at X = cos(1).

Areas of Agreement / Disagreement

Participants do not reach a consensus on the exact convergence point, though there is a suggestion that it relates to the cosine function.

Contextual Notes

The discussion includes assumptions about the convergence behavior of the series and its relationship to the cosine function, which may depend on the definitions used for convergence in this context.

amr21
Messages
10
Reaction score
0
Starting from the origin, go one unit east, then the same distance north, then (1/2) of the previous distance west, then (1/3)
of the previous distance south, then (1/4) of the previous distance east, and so on. What point does this 'spiral' converge to?


I have attempted to sketch this out but not sure how to work out what point it converges to. I know that it is somewhere between n/2 and 7n/12 (after 6 moves from the origin). The fractions are getting smaller but is there an easy way to work out at what point it converges?
 
Physics news on Phys.org
amr21 said:
Starting from the origin, go one unit east, then the same distance north, then (1/2) of the previous distance west, then (1/3)
of the previous distance south, then (1/4) of the previous distance east, and so on. What point does this 'spiral' converge to?


I have attempted to sketch this out but not sure how to work out what point it converges to. I know that it is somewhere between n/2 and 7n/12 (after 6 moves from the origin). The fractions are getting smaller but is there an easy way to work out at what point it converges?

Hi amr21,

Looking at the X coordinate, we have:
$$X=1-\frac 12 + \left(\frac 12 \cdot\frac 13 \cdot\frac 14\right) - \left(\frac 12 \cdot\frac 13 \cdot\frac 14 \cdot\frac 15 \cdot\frac 16\right) + ...$$
This looks a bit like the power series of the cosine:
$$\cos x = 1 - \frac 1{2!} x^2 + \frac 1{4!} x^4 - ...$$
Can we find an $x$ to match them? (Wondering)
 
I like Serena said:
Hi amr21,

Looking at the X coordinate, we have:
$$X=1-\frac 12 + \left(\frac 12 \cdot\frac 13 \cdot\frac 14\right) - \left(\frac 12 \cdot\frac 13 \cdot\frac 14 \cdot\frac 15 \cdot\frac 16\right) + ...$$
This looks a bit like the power series of the cosine:
$$\cos x = 1 - \frac 1{2!} x^2 + \frac 1{4!} x^4 - ...$$
Can we find an $x$ to match them? (Wondering)

That makes sense, thank you! Could you explain further on how to find an x to match them?
 
amr21 said:
That makes sense, thank you! Could you explain further on how to find an x to match them?

We should match $-\frac 12$ with $-\frac 1{2!}x^2$, implying that $x^2=1$, which means that $x=1$ will do the trick.
It means that the spiral ends at $X=\cos(1)$.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 37 ·
2
Replies
37
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K