MHB What point does the spiral converge to?

Click For Summary
The discussion centers on determining the convergence point of a spiral defined by a sequence of movements starting from the origin. The movements consist of alternating directions with decreasing distances, leading to a complex series for the X coordinate. Participants explore the relationship between this series and the power series of the cosine function. It is concluded that the spiral converges to the point X = cos(1). This mathematical exploration highlights the connection between geometric sequences and trigonometric functions.
amr21
Messages
10
Reaction score
0
Starting from the origin, go one unit east, then the same distance north, then (1/2) of the previous distance west, then (1/3)
of the previous distance south, then (1/4) of the previous distance east, and so on. What point does this 'spiral' converge to?


I have attempted to sketch this out but not sure how to work out what point it converges to. I know that it is somewhere between n/2 and 7n/12 (after 6 moves from the origin). The fractions are getting smaller but is there an easy way to work out at what point it converges?
 
Mathematics news on Phys.org
amr21 said:
Starting from the origin, go one unit east, then the same distance north, then (1/2) of the previous distance west, then (1/3)
of the previous distance south, then (1/4) of the previous distance east, and so on. What point does this 'spiral' converge to?


I have attempted to sketch this out but not sure how to work out what point it converges to. I know that it is somewhere between n/2 and 7n/12 (after 6 moves from the origin). The fractions are getting smaller but is there an easy way to work out at what point it converges?

Hi amr21,

Looking at the X coordinate, we have:
$$X=1-\frac 12 + \left(\frac 12 \cdot\frac 13 \cdot\frac 14\right) - \left(\frac 12 \cdot\frac 13 \cdot\frac 14 \cdot\frac 15 \cdot\frac 16\right) + ...$$
This looks a bit like the power series of the cosine:
$$\cos x = 1 - \frac 1{2!} x^2 + \frac 1{4!} x^4 - ...$$
Can we find an $x$ to match them? (Wondering)
 
I like Serena said:
Hi amr21,

Looking at the X coordinate, we have:
$$X=1-\frac 12 + \left(\frac 12 \cdot\frac 13 \cdot\frac 14\right) - \left(\frac 12 \cdot\frac 13 \cdot\frac 14 \cdot\frac 15 \cdot\frac 16\right) + ...$$
This looks a bit like the power series of the cosine:
$$\cos x = 1 - \frac 1{2!} x^2 + \frac 1{4!} x^4 - ...$$
Can we find an $x$ to match them? (Wondering)

That makes sense, thank you! Could you explain further on how to find an x to match them?
 
amr21 said:
That makes sense, thank you! Could you explain further on how to find an x to match them?

We should match $-\frac 12$ with $-\frac 1{2!}x^2$, implying that $x^2=1$, which means that $x=1$ will do the trick.
It means that the spiral ends at $X=\cos(1)$.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
2
Views
1K
Replies
10
Views
2K
Replies
16
Views
4K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K