MHB What point does the spiral converge to?

amr21
Messages
10
Reaction score
0
Starting from the origin, go one unit east, then the same distance north, then (1/2) of the previous distance west, then (1/3)
of the previous distance south, then (1/4) of the previous distance east, and so on. What point does this 'spiral' converge to?


I have attempted to sketch this out but not sure how to work out what point it converges to. I know that it is somewhere between n/2 and 7n/12 (after 6 moves from the origin). The fractions are getting smaller but is there an easy way to work out at what point it converges?
 
Mathematics news on Phys.org
amr21 said:
Starting from the origin, go one unit east, then the same distance north, then (1/2) of the previous distance west, then (1/3)
of the previous distance south, then (1/4) of the previous distance east, and so on. What point does this 'spiral' converge to?


I have attempted to sketch this out but not sure how to work out what point it converges to. I know that it is somewhere between n/2 and 7n/12 (after 6 moves from the origin). The fractions are getting smaller but is there an easy way to work out at what point it converges?

Hi amr21,

Looking at the X coordinate, we have:
$$X=1-\frac 12 + \left(\frac 12 \cdot\frac 13 \cdot\frac 14\right) - \left(\frac 12 \cdot\frac 13 \cdot\frac 14 \cdot\frac 15 \cdot\frac 16\right) + ...$$
This looks a bit like the power series of the cosine:
$$\cos x = 1 - \frac 1{2!} x^2 + \frac 1{4!} x^4 - ...$$
Can we find an $x$ to match them? (Wondering)
 
I like Serena said:
Hi amr21,

Looking at the X coordinate, we have:
$$X=1-\frac 12 + \left(\frac 12 \cdot\frac 13 \cdot\frac 14\right) - \left(\frac 12 \cdot\frac 13 \cdot\frac 14 \cdot\frac 15 \cdot\frac 16\right) + ...$$
This looks a bit like the power series of the cosine:
$$\cos x = 1 - \frac 1{2!} x^2 + \frac 1{4!} x^4 - ...$$
Can we find an $x$ to match them? (Wondering)

That makes sense, thank you! Could you explain further on how to find an x to match them?
 
amr21 said:
That makes sense, thank you! Could you explain further on how to find an x to match them?

We should match $-\frac 12$ with $-\frac 1{2!}x^2$, implying that $x^2=1$, which means that $x=1$ will do the trick.
It means that the spiral ends at $X=\cos(1)$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top