MHB What point does the spiral converge to?

amr21
Messages
10
Reaction score
0
Starting from the origin, go one unit east, then the same distance north, then (1/2) of the previous distance west, then (1/3)
of the previous distance south, then (1/4) of the previous distance east, and so on. What point does this 'spiral' converge to?


I have attempted to sketch this out but not sure how to work out what point it converges to. I know that it is somewhere between n/2 and 7n/12 (after 6 moves from the origin). The fractions are getting smaller but is there an easy way to work out at what point it converges?
 
Mathematics news on Phys.org
amr21 said:
Starting from the origin, go one unit east, then the same distance north, then (1/2) of the previous distance west, then (1/3)
of the previous distance south, then (1/4) of the previous distance east, and so on. What point does this 'spiral' converge to?


I have attempted to sketch this out but not sure how to work out what point it converges to. I know that it is somewhere between n/2 and 7n/12 (after 6 moves from the origin). The fractions are getting smaller but is there an easy way to work out at what point it converges?

Hi amr21,

Looking at the X coordinate, we have:
$$X=1-\frac 12 + \left(\frac 12 \cdot\frac 13 \cdot\frac 14\right) - \left(\frac 12 \cdot\frac 13 \cdot\frac 14 \cdot\frac 15 \cdot\frac 16\right) + ...$$
This looks a bit like the power series of the cosine:
$$\cos x = 1 - \frac 1{2!} x^2 + \frac 1{4!} x^4 - ...$$
Can we find an $x$ to match them? (Wondering)
 
I like Serena said:
Hi amr21,

Looking at the X coordinate, we have:
$$X=1-\frac 12 + \left(\frac 12 \cdot\frac 13 \cdot\frac 14\right) - \left(\frac 12 \cdot\frac 13 \cdot\frac 14 \cdot\frac 15 \cdot\frac 16\right) + ...$$
This looks a bit like the power series of the cosine:
$$\cos x = 1 - \frac 1{2!} x^2 + \frac 1{4!} x^4 - ...$$
Can we find an $x$ to match them? (Wondering)

That makes sense, thank you! Could you explain further on how to find an x to match them?
 
amr21 said:
That makes sense, thank you! Could you explain further on how to find an x to match them?

We should match $-\frac 12$ with $-\frac 1{2!}x^2$, implying that $x^2=1$, which means that $x=1$ will do the trick.
It means that the spiral ends at $X=\cos(1)$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top